ﻻ يوجد ملخص باللغة العربية
We prove explicit doubling inequalities and obtain uniform upper bounds (under $(d-1)$-dimensional Hausdorff measure) of nodal sets of weak solutions for a family of linear elliptic equations with rapidly oscillating periodic coefficients. The doubling inequalities, explicitly depending on the doubling index, are proved at different scales by a combination of convergence rates, a three-ball inequality from certain analyticity, and a monotonicity formula of a frequency function. The upper bounds of nodal sets are shown by using the doubling inequalities, approximations by harmonic functions and an iteration argument.
We study partial analyticity of solutions to elliptic systems and analyticity of level sets of solutions to nonlinear elliptic systems. We consider several applications, including analyticity of flow lines for bounded stationary solutions to the 2-d
This paper is concerned with periodic homogenization of second-order elliptic systems in divergence form with oscillating Dirichlet data or Neumann data of first order. We prove that the homogenized boundary data belong to $W^{1, p}$ for any $1<p<inf
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous
This paper is concerned with the regularity theory of a transmission problem arising in composite materials. We give a new self-contained proof for the $C^{k,alpha}$ estimates on both sides of the interface under the minimal assumptions on the interf
This work is devoted to the asymptotic behavior of eigenvalues of an elliptic operator with rapidly oscillating random coefficients on a bounded domain with Dirichlet boundary conditions. A sharp convergence rate is obtained for isolated eigenvalues