ﻻ يوجد ملخص باللغة العربية
We construct new families of spin chain Hamiltonians that are local, integrable and translationally invariant. To do so, we make use of the Clifford group that arises in quantum information theory. We consider translation invariant Clifford group transformations that can be described by matrix product operators (MPOs). We classify the translation invariant Clifford group transformations that consist of a shift operator and an MPO of bond dimension two -- this includes transformations that preserve locality of all Hamiltonians; as well as those that lead to non-local images of particular operators but nevertheless preserve locality of certain Hamiltonians. We characterise the translation invariant Clifford group transformations that take single-site Pauli operators to local operators on at most five sites -- examples of Quantum Cellular Automata -- leading to a discrete family of Hamiltonians that are equivalent to the canonical XXZ model under such transformations. For spin chains solvable by algebraic Bethe Ansatz, we explain how conjugating by a matrix product operator affects the underlying integrable structure. This allows us to relate our results to the usual classifications of integrable Hamiltonians. We also treat the case of spin chains solvable by free fermions.
We solve the longstanding problem to define a functional characterization of the spectrum of the transfer matrix associated to the most general spin-1/2 representations of the 6-vertex reflection algebra for general inhomogeneous chains. The correspo
An integrable Heisenberg spin chain with nearest-neighbour couplings, next-nearest-neighbour couplings and Dzyaloshinski-Moriya interacton is constructed. The integrability of the model is proven. Based on the Bethe Ansatz solutions, the ground state
Using anisotropic R-matrices associated with affine Lie algebras $hat g$ (specifically, $A_{2n}^{(2)}, A_{2n-1}^{(2)}, B_n^{(1)}, C_n^{(1)}, D_n^{(1)}$) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chai
We define parafermionic observables in various lattice loop models, including examples where no Kramers-Wannier duality holds. For a particular rhombic embedding of the lattice in the plane and a value of the parafermionic spin these variables are di
In two-dimensional statistical models possessing a discretely holomorphic parafermion, we introduce a modified discrete Cauchy-Riemann equation on the boundary of the domain, and we show that the solution of this equation yields integrable boundary B