ﻻ يوجد ملخص باللغة العربية
In two-dimensional statistical models possessing a discretely holomorphic parafermion, we introduce a modified discrete Cauchy-Riemann equation on the boundary of the domain, and we show that the solution of this equation yields integrable boundary Boltzmann weights. This approach is applied to (i) the square-lattice O(n) loop model, where the exact locations of the special and ordinary transitions are recovered, and (ii) the Fateev-Zamolodchikov $Z_N$ spin model, where a new rotation-invariant, integrable boundary condition is discovered for generic $N$.
We define parafermionic observables in various lattice loop models, including examples where no Kramers-Wannier duality holds. For a particular rhombic embedding of the lattice in the plane and a value of the parafermionic spin these variables are di
We construct lattice parafermions - local products of order and disorder operators - in nearest-neighbor Z(N) models on regular isotropic planar lattices, and show that they are discretely holomorphic, that is they satisfy discrete Cauchy-Riemann equ
In this paper limiting distribution functions of field and density fluctuations are explicitly and rigorously computed for the different phases of the Bose gas. Several Gaussian and non-Gaussian distribution functions are obtained and the dependence
In this contribution we discuss the role which incoherent boundary conditions can play in the study of phase transitions. This is a question of particular relevance for the analysis of disordered systems, and in particular of spin glasses. For the mo
We study the holomorphic extension associated with power series, i.e., the analytic continuation from the unit disk to the cut-plane $mathbb{C} setminus [1,+infty)$. Analogous results are obtained also in the study of trigonometric series: we establi