ﻻ يوجد ملخص باللغة العربية
An integrable Heisenberg spin chain with nearest-neighbour couplings, next-nearest-neighbour couplings and Dzyaloshinski-Moriya interacton is constructed. The integrability of the model is proven. Based on the Bethe Ansatz solutions, the ground state and the elementary excitations are studied. It is shown that the spinon excitation spectrum of the present system possesses a novel triple arched structure. The method provided in this paper is general to construct new integrable models with next-nearest-neighbour couplings.
An integrable anisotropic Heisenberg spin chain with nearest-neighbour couplings, next-nearest-neighbour couplings and scalar chirality terms is constructed. After proving the integrability, we obtain the exact solution of the system. The ground stat
The exact solution of an integrable anisotropic Heisenberg spin chain with nearest-neighbour, next-nearest-neighbour and scalar chirality couplings is studied, where the boundary condition is the antiperiodic one. The detailed construction of Hamilto
The off-diagonal Bethe ansatz method is generalized to the integrable model associated with the $sp(4)$ (or $C_2$) Lie algebra. By using the fusion technique, we obtain the complete operator product identities among the fused transfer matrices. These
The trigonometric su(n) spin chain with anti-periodic boundary condition (su(n) spin torus) is demonstrated to be Yang-Baxter integrable. Based on some intrinsic properties of the R-matrix, certain operator product identities of the transfer matrix a
The graded off-diagonal Bethe ansatz method is proposed to study supersymmetric quantum integrable models (i.e., quantum integrable models associated with superalgebras). As an example, the exact solutions of the $SU(2|2)$ vertex model with both peri