ﻻ يوجد ملخص باللغة العربية
For a function $fcolon [0,1]tomathbb R$, we consider the set $E(f)$ of points at which $f$ cuts the real axis. Given $fcolon [0,1]tomathbb R$ and a Cantor set $Dsubset [0,1]$ with ${0,1}subset D$, we obtain conditions equivalent to the conjunction $fin C[0,1]$ (or $fin C^infty [0,1]$) and $Dsubset E(f)$. This generalizes some ideas of Zabeti. We observe that, if $f$ is continuous, then $E(f)$ is a closed nowhere dense subset of $f^{-1}[{ 0}]$ where each $xin {0,1}cap E(f)$ is an accumulation point of $E(f)$. Our main result states that, for a closed nowhere dense set $Fsubset [0,1]$ with each $xin {0,1}cap E(f)$ being an accumulation point of $F$, there exists $fin C^infty [0,1]$ such that $F=E(f)$.
We present a quantization scheme of an arbitrary measure space based on overcomplete families of states and generalizing the Klauder and the Berezin-Toeplitz approaches. This scheme could reveal itself as an efficient tool for quantizing physical sys
In The factorization of the Giry monad (arXiv:1707.00488v2) the author considers two $sigma$-algebras on convex spaces of functions to the unit interval. One of them is generated by the Boolean subobjects and the other is the $sigma$-algebra induced
Let $I=[0,1)$ and $mathcal{PC}(I)$ [resp. $mathcal{PC}^+(I)$] be the quotient group of the group of all piecewise continuous [resp. piecewise continuous and orientation preserving] bijections of $I$ by its normal subgroup consisting in elements with
The LULU operators, well known in the nonlinear multiresolution analysis of sequences, are extended to functions defined on a continuous domain, namely, a real interval. We show that the extended operators replicate the essential properties of their
We construct, under the assumption that union of less than continuum many meager subsets of R is meager in R, an additive connectivity function f:R-->R with Cantor intermediate value property which is not almost continuous. This gives a partial answe