ﻻ يوجد ملخص باللغة العربية
In The factorization of the Giry monad (arXiv:1707.00488v2) the author considers two $sigma$-algebras on convex spaces of functions to the unit interval. One of them is generated by the Boolean subobjects and the other is the $sigma$-algebra induced by the evaluation maps. The author asserts that, under the assumptions given in the paper, the two $sigma$-algebras coincide. We give examples contradicting this statement.
For a function $fcolon [0,1]tomathbb R$, we consider the set $E(f)$ of points at which $f$ cuts the real axis. Given $fcolon [0,1]tomathbb R$ and a Cantor set $Dsubset [0,1]$ with ${0,1}subset D$, we obtain conditions equivalent to the conjunction $f
We make some beginning observations about the category $mathbb{E}mathrm{q}$ of equivalence relations on the set of natural numbers, where a morphism between two equivalence relations $R,S$ is a mapping from the set of $R$-equivalence classes to that
For a category $mathbb{C}$, a small category $mathbb{I}$, and a pre-cover relation $sqsubset$ on $mathbb C$ we prove, under certain completeness assumptions on $mathbb C$, that a morphism $g: Bto C$ in the functor category $mathbb {C}^{mathbb I}$ adm
We show that doubly degenerate Penon tricategories give symmetric rather than braided monoidal categories. We prove that Penon tricategories cannot give all tricategories, but we show that a slightly modified version of the definition rectifies the s
Frobenius monoidal functors preserve duals. We show that conversely, (co)monoidal functors between autonomous categories which preserve duals are Frobenius monoidal. We apply this result to linearly distributive functors between autonomous categories.