ﻻ يوجد ملخص باللغة العربية
We construct, under the assumption that union of less than continuum many meager subsets of R is meager in R, an additive connectivity function f:R-->R with Cantor intermediate value property which is not almost continuous. This gives a partial answer to a question of D. Banaszewski. We also show that every extendable function g:R-->R with a dense graph satisfies the following stronger version of the SCIVP property: for every a<b and every perfect set K between g(a) and g(b) there is a perfect subset C of (a,b) such that g[C] subset K and g|C is continuous strictly increasing. This property is used to construct a ZFC example of an additive almost continuous function f:R-->R which has the strong Cantor intermediate value property but is not extendable. This answers a question of H. Rosen. This also generalizes Rosens result that a similar (but not additive) function exists under the assumption of the continuum hypothesis.
A function f from reals to reals (f:R->R) is almost continuous (in the sense of Stallings) iff every open set in the plane which contains the graph of f contains the graph of a continuous function. Natkaniec showed that for any family F of continuu
Following Chaudhuri, Sankaranarayanan, and Vardi, we say that a function $f:[0,1] to [0,1]$ is $r$-regular if there is a B{u}chi automaton that accepts precisely the set of base $r in mathbb{N}$ representations of elements of the graph of $f$. We sho
The LULU operators, well known in the nonlinear multiresolution analysis of sequences, are extended to functions defined on a continuous domain, namely, a real interval. We show that the extended operators replicate the essential properties of their
A function $f:Xto Y$ between topological spaces is called $sigma$-$continuous$ (resp. $barsigma$-$continuous$) if there exists a (closed) cover ${X_n}_{ninomega}$ of $X$ such that for every $ninomega$ the restriction $f{restriction}X_n$ is continuous
In this paper we study the large linear and algebraic size of the family of unbounded continuous and integrable functions in $[0,+infty)$ and of the family of sequences of these functions converging to zero uniformly on compacta and in $L^1$-norm. In