ترغب بنشر مسار تعليمي؟ اضغط هنا

The NEUT Neutrino Interaction Simulation

67   0   0.0 ( 0 )
 نشر من قبل Luke Pickering
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

NEUT is a neutrino-nucleus interaction simulation. It can be used to simulate interactions for neutrinos with between 100 MeV and a few TeV of energy. NEUT is also capable of simulating hadron interactions within a nucleus and is used to model nucleon decay and hadron--nucleus interactions for particle propagation in detector simulations. This article describes the range of interactions modelled and how each is implemented.



قيم البحث

اقرأ أيضاً

The MiniBooNE large axial mass anomaly has prompted a great deal of theoretical work on sophisticated Charged Current Quasi-Elastic (CCQE) neutrino interaction models in recent years. As the dominant interaction mode at T2K energies, and the signal p rocess in oscillation analyses, it is important for the T2K experiment to include realistic CCQE cross section uncertainties in T2K analyses. To this end, T2Ks Neutrino Interaction Working Group has implemented a number of recent models in NEUT, T2Ks primary neutrino interaction event generator. In this paper, we give an overview of the models implemented, and present fits to published muon neutrino and muon antineutrino CCQE cross section measurements from the MiniBooNE and MINERvA experiments. The results of the fits are used to select a default cross section model for future T2K analyses, and to constrain the cross section uncertainties of the model. We find a model consisting of a modified relativistic Fermi gas model and multinucleon interactions most consistently describes the available data.
245 - Tommy Ohlsson , He Zhang 2008
We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on theta_13. We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles theta_13 and theta_12 are discussed in detailed. Finally, we show that, even for a vanishing theta_13, an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs.
Current and future neutrino oscillation experiments utilize information of hadronic final states to improve sensitivities on oscillation parameters measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, neutrino interaction generators rely on the PYTHIA6 hadronization program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Next, we discuss the possibility to implement the PYTHIA8 program in neutrino interaction generators, including GENIE and NEUT. Finally, we show preliminary comparisons of PYTHIA8 predictions with neutrino hadron multiplicity data from bubble chamber experiments within the GENIE hadronization validation tool.
87 - A. Parada 2019
In several extensions of the Standard Model of Particle Physics (SMPP), the neutrinos acquire electromagnetic properties such as the electric millicharge. Theoretical and experimental bounds have been reported in the literature for this parameter. In this work, we first carried out a statistical analysis by using data from reactor neutrino experiments, which include elastic neutrino-electron scattering (ENES) processes, in order to obtain both individual and combined limits on the neutrino electric millicharge (NEM). Then we performed a similar calculation to show a estimate of the sensitivity of future experiments of reactor neutrinos to the NEM, by involving coherent elastic neutrino-nucleus scattering (CENNS). In the first case, the constraints achieved from the combination of several experiments are $-1.1times 10^{-12}e < q_{ u} < 9.3times 10^{-13}e$ ($90%$ C.L.), and in the second scenario we obtained the bounds $-1.8times 10^{-14}e < q_{ u} < 1.8times 10^{-14}e$ ($90%$ C.L.). As we will show here, these combined analyses of different experimental data can lead to stronger constraints than those based on individual analysis. Where CENNS interactions would stand out as an important alternative to improve the current limits on NEM.
The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be diff icult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا