ترغب بنشر مسار تعليمي؟ اضغط هنا

First look at the PYTHIA8 hadronization program for neutrino interaction generators

53   0   0.0 ( 0 )
 نشر من قبل Teppei Katori Dr.
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Current and future neutrino oscillation experiments utilize information of hadronic final states to improve sensitivities on oscillation parameters measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, neutrino interaction generators rely on the PYTHIA6 hadronization program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Next, we discuss the possibility to implement the PYTHIA8 program in neutrino interaction generators, including GENIE and NEUT. Finally, we show preliminary comparisons of PYTHIA8 predictions with neutrino hadron multiplicity data from bubble chamber experiments within the GENIE hadronization validation tool.



قيم البحث

اقرأ أيضاً

FASER$ u$ at the CERN Large Hadron Collider (LHC) is designed to directly detect collider neutrinos for the first time and study their cross sections at TeV energies, where no such measurements currently exist. In 2018, a pilot detector employing emu lsion films was installed in the far-forward region of ATLAS, 480 m from the interaction point, and collected 12.2 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of 13 TeV. We describe the analysis of this pilot run data and the observation of the first neutrino interaction candidates at the LHC. This milestone paves the way for high-energy neutrino measurements at current and future colliders.
Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modeled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.
261 - Tommy Ohlsson , He Zhang 2008
We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on theta_13. We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles theta_13 and theta_12 are discussed in detailed. Finally, we show that, even for a vanishing theta_13, an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs.
NEUT is a neutrino-nucleus interaction simulation. It can be used to simulate interactions for neutrinos with between 100 MeV and a few TeV of energy. NEUT is also capable of simulating hadron interactions within a nucleus and is used to model nucleo n decay and hadron--nucleus interactions for particle propagation in detector simulations. This article describes the range of interactions modelled and how each is implemented.
The Short-Baseline Neutrino, or SBN, program consists of three liquid argon time projection chamber detectors located along the Booster Neutrino Beam at the Fermi National Accelerator Laboratory. Its main goals include searches for new physics - part icularly eV-scale sterile neutrinos, detailed studies of neutrino-nucleus interactions at the GeV energy scale, and the advancement of the liquid argon detector technology that will also be used in the DUNE/LBNF long-baseline neutrino experiment in the next decade. Here we review these science goals and the current experimental status of SBN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا