ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Standard Interaction Effects at Reactor Neutrino Experiments

257   0   0.0 ( 0 )
 نشر من قبل Zhang He
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on theta_13. We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles theta_13 and theta_12 are discussed in detailed. Finally, we show that, even for a vanishing theta_13, an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs.



قيم البحث

اقرأ أيضاً

Searching for non-standard neutrino interactions, as a means for discovering physics beyond the Standard Model, has one of the key goals of dedicated neutrino experiments, current and future. We demonstrate here that much of the parameter space acces sible to such experiments is already ruled out by the RUN II data of the Large Hadron Collider experiment.
We formulate an Effective Field Theory (EFT) for Non Standard neutrino Interactions (NSI) in elastic scattering with light quarks, leptons, gluons and photons, including all possible operators of dimension 5, 6 and 7. We provide the expressions for t he cross sections in coherent neutrino-nucleus scattering and in deep inelastic scattering. Assuming single operator dominance we constrain the respective Wilson coefficient using the measurements by the COHERENT and CHARM collaborations. We also point out the constraining power of future elastic neutrino-nucleus scattering experiments. Finally, we explore the implications of the bounds for SMEFT operators above the electroweak breaking scale.
80 - HyangKyu Park 2017
We propose to search for light $U(1)$ dark photons, $A$, produced via kinetically mixing with ordinary photons via the Compton-like process, $gamma e^- rightarrow A e^-$, in a nuclear reactor and detected by their interactions with the material in th e active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on $epsilon$, the $A$-$gamma$ mixing parameter, $epsilon$, for dark-photon masses below 1$sim$MeV of $epsilon~< ~1.3times 10^{-5}$ and $epsilon~<~2.1times 10^{-5}$, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.
Searches for pseudoscalar axion-like-particles (ALPs) typically rely on their decay in beam dumps or their conversion into photons in haloscopes and helioscopes. We point out a new experimental direction for ALP probes through their production via th e Primakoff process or Compton-like scattering off of electrons or nuclei. We consider ALPs produced by the intense gamma ray flux available from megawatt-scale nuclear reactors at neutrino experiments through Primakoff-like or Compton-like channels. Low-threshold detectors in close proximity to the core will have visibility to ALP decays and inverse Primakoff and Compton scattering, providing sensitivity to the ALP-photon and ALP-electron couplings. We find that the sensitivity to these couplings at the ongoing MINER neutrino experiment exceeds existing limits set by laboratory experiments and, for the ALP-electron coupling, we forecast the worlds best laboratory-based constraints over a large portion of the sub-MeV ALP mass range.
We explore the complementarity between LHC searches and neutrino experiments in probing neutrino non-standard interactions. Our study spans the theoretical frameworks of effective field theory, simplified model and an illustrative UV completion, high lighting the synergies and distinctive features in all cases. We show that besides constraining the allowed NSI parameter space, the LHC data can break important degeneracies present in oscillation experiments such as DUNE, while the latter play an important role in probing light and weakly coupled physics undetectable at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا