ﻻ يوجد ملخص باللغة العربية
Intent classification is a major task in spoken language understanding (SLU). Since most models are built with pre-collected in-domain (IND) training utterances, their ability to detect unsupported out-of-domain (OOD) utterances has a critical effect in practical use. Recent works have shown that using extra data and labels can improve the OOD detection performance, yet it could be costly to collect such data. This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection. Our method designs a novel domain-regularized module (DRM) to reduce the overconfident phenomenon of a vanilla classifier, achieving a better generalization in both cases. Besides, DRM can be used as a drop-in replacement for the last layer in any neural network-based intent classifier, providing a low-cost strategy for a significant improvement. The evaluation on four datasets shows that our method built on BERT and RoBERTa models achieves state-of-the-art performance against existing approaches and the strong baselines we created for the comparisons.
User queries for a real-world dialog system may sometimes fall outside the scope of the systems capabilities, but appropriate system responses will enable smooth processing throughout the human-computer interaction. This paper is concerned with the u
Pretrained Transformer-based models were reported to be robust in intent classification. In this work, we first point out the importance of in-domain out-of-scope detection in few-shot intent recognition tasks and then illustrate the vulnerability of
For most intelligent assistant systems, it is essential to have a mechanism that detects out-of-domain (OOD) utterances automatically to handle noisy input properly. One typical approach would be introducing a separate class that contains OOD utteran
The task of identifying out-of-domain (OOD) input examples directly at test-time has seen renewed interest recently due to increased real world deployment of models. In this work, we focus on OOD detection for natural language sentence inputs to task
In this paper, we study the few-shot multi-label classification for user intent detection. For multi-label intent detection, state-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent lab