ﻻ يوجد ملخص باللغة العربية
Pretrained Transformer-based models were reported to be robust in intent classification. In this work, we first point out the importance of in-domain out-of-scope detection in few-shot intent recognition tasks and then illustrate the vulnerability of pretrained Transformer-based models against samples that are in-domain but out-of-scope (ID-OOS). We empirically show that pretrained models do not perform well on both ID-OOS examples and general out-of-scope examples, especially on fine-grained few-shot intent detection tasks. To figure out how the models mistakenly classify ID-OOS intents as in-scope intents, we further conduct analysis on confidence scores and the overlapping keywords and provide several prospective directions for future work. We release the relevant resources to facilitate future research.
User queries for a real-world dialog system may sometimes fall outside the scope of the systems capabilities, but appropriate system responses will enable smooth processing throughout the human-computer interaction. This paper is concerned with the u
Intent classification is a major task in spoken language understanding (SLU). Since most models are built with pre-collected in-domain (IND) training utterances, their ability to detect unsupported out-of-domain (OOD) utterances has a critical effect
Pretrained Transformers achieve remarkable performance when training and test data are from the same distribution. However, in real-world scenarios, the model often faces out-of-distribution (OOD) instances that can cause severe semantic shift proble
Modern task-oriented dialog systems need to reliably understand users intents. Intent detection is most challenging when moving to new domains or new languages, since there is little annotated data. To address this challenge, we present a suite of pr
Zero-shot intent detection (ZSID) aims to deal with the continuously emerging intents without annotated training data. However, existing ZSID systems suffer from two limitations: 1) They are not good at modeling the relationship between seen and unse