ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical pumping of quantum dot micropillar lasers

109   0   0.0 ( 0 )
 نشر من قبل Daniel Brunner
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Arrays of quantum dot micropillar lasers are an attractive technology platform for various applications in the wider field of nanophotonics. Of particular interest is the potential efficiency enhancement as consequence of cavity quantum electrodynamics effects which makes them prime candidates for next generation photonic neurons in neural network hardware. However, in particular for optical pumping their power-conversion efficiency can be very low. Here we perform an in-depth experimental analysis of quantum dot microlasers and investigate their input-output relationship over a wide range of optical pumping conditions. We find that the current energy efficiency limitation is caused by disadvantageous optical pumping concepts and by a low exciton conversion efficiency. Our results indicate that for non-resonant pumping into the GaAs matrix (wetting layer), 3.4% (0.6%) of the optical pump is converted into lasing-relevant excitons, and of those only 2% (0.75%) provide gain to the lasing transition. Based on our findings we propose to improve the pumping efficiency by orders of magnitude by increasing the aluminium content of the AlGaAs/GaAs mirror pairs in the upper Bragg reflector.



قيم البحث

اقرأ أيضاً

381 - H. A. M. Leymann 2013
We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic s- shaped input-output curve, the output intensity of the second mode saturates and even decreases with increasing injection current above threshold. Measuring the photon auto-correlation function g^{(2)}(tau) of the light emission confirms the onset of lasing in the first mode with g^{(2)}(0) approaching unity above threshold. In contrast, strong photon bunching associated with super-thermal values of g^{(2)}(0) is detected for the other mode for currents above threshold. This behavior is attributed to gain competition of the two modes induced by the common gain material, which is confirmed by photon crosscorrelation measurements revealing a clear anti-correlation between emission events of the two modes. The experimental studies are in excellent qualitative agreement with theoretical studies based on a microscopic semiconductor theory, which we extend to the case of two modes interacting with the common gain medium. Moreover, we treat the problem by an extended birth-death model for two interacting modes, which reveals, that the photon probability distribution of each mode has a double peak structure, indicating switching behavior of the modes for the pump rates around threshold.
Photonic platforms are an excellent setting for quantum technologies because weak photon-environment coupling ensures long coherence times. The second key ingredient for quantum photonics is interactions between photons, which can be provided by opti cal nonlinearities in the form of cross-phase-modulation (XPM). This approach underpins many proposed applications in quantum optics and information processing, but achieving its potential requires strong single-photon-level nonlinear phase shifts and also scalable nonlinear elements. In this work we show that the required nonlinearity can be provided by exciton-polaritons in micropillars with embedded quantum wells. These combine the strong interactions of excitons with the scalability of micrometer-sized emitters. We observe XPM up to $3 pm 1$ mrad per particle using laser beams attenuated to below single photon average intensity. With our work serving as a first stepping stone, we lay down a route for quantum information processing in polaritonic lattices.
256 - F. Klotz , V. Jovanov , J. Kierig 2010
A highly asymmetric dynamic nuclear spin pumping is observed in a single self assembled InGaAs quantum dot subject to resonant optical pumping of the neutral exciton transition leading to a large maximum polarization of 54%. This dynamic nuclear pola rization is found to be much stronger following pumping of the higher energy Zeeman state. Time-resolved measurements allow us to directly monitor the buildup of the nuclear spin polarization in real time and to quantitatively study the dynamics of the process. A strong dependence of the observed dynamic nuclear polarization on the applied magnetic field is found, with resonances in the pumping efficiency being observed for particular magnetic fields. We develop a model that fully accounts for the observed behaviour, where the pumping of the nuclear spin system is due to hyperfine-mediated spin flip transitions between the states of the neutral exciton manifold.
Developing future quantum communication may rely on the ability to engineer cavity-mediated interactions between photons and solid-state artificial atoms, in a deterministic way. Here, we report a set of technological and experimental developments fo r the deterministic coupling between the optical mode of a micropillar cavity and a quantum dot trion transition. We first identify a charged transition through in-plane magnetic field spectroscopy, and then tune the optical cavity mode to its energy via in-situ lithography. In addition, we design an asymmetric tunneling barrier to allow the optical trapping of the charge, assisted by a quasi-resonant pumping scheme, in order to control its occupation probability. We evaluate the generation of a positively-charged quantum dot through second order auto-correlation measurements of its resonance fluorescence, and the quality of light-matter interaction for these spin-photon interfaces is assessed by measuring the performance of the device as a single-photon source.
Optically pumped InAs quantum dot microdisk lasers with grooves etched on their surface by a focused ion beam is studied. It is shown that the radial grooves, depending on their length, suppress the lasing of specific radial modes of the microdisk. T otal suppression of all radial modes except for the fundamental radial one is also demonstrated. The comparison of laser spectra measured at 78 K before and after ion beam etching for microdisk of 8 $mu$m in diameter shows a six-fold increase of mode spacing, from 2.5 nm to 15.5 nm, without significant decrease of the dominant mode quality factor. Numerical simulations are in good agreement with experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا