ترغب بنشر مسار تعليمي؟ اضغط هنا

Q-space Conditioned Translation Networks for Directional Synthesis of Diffusion Weighted Images from Multi-modal Structural MRI

360   0   0.0 ( 0 )
 نشر من قبل Mengwei Ren
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Current deep learning approaches for diffusion MRI modeling circumvent the need for densely-sampled diffusion-weighted images (DWIs) by directly predicting microstructural indices from sparsely-sampled DWIs. However, they implicitly make unrealistic assumptions of static $q$-space sampling during training and reconstruction. Further, such approaches can restrict downstream usage of variably sampled DWIs for usages including the estimation of microstructural indices or tractography. We propose a generative adversarial translation framework for high-quality DWI synthesis with arbitrary $q$-space sampling given commonly acquired structural images (e.g., B0, T1, T2). Our translation network linearly modulates its internal representations conditioned on continuous $q$-space information, thus removing the need for fixed sampling schemes. Moreover, this approach enables downstream estimation of high-quality microstructural maps from arbitrarily subsampled DWIs, which may be particularly important in cases with sparsely sampled DWIs. Across several recent methodologies, the proposed approach yields improved DWI synthesis accuracy and fidelity with enhanced downstream utility as quantified by the accuracy of scalar microstructure indices estimated from the synthesized images. Code is available at https://github.com/mengweiren/q-space-conditioned-dwi-synthesis.



قيم البحث

اقرأ أيضاً

Diffusion-weighted MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space, typically acquired in one or more shells. Recent developments in microstructure imaging and multi-tissue decomposit ion have sparked renewed attention in the radial b-value dependence of the signal. Applications in motion correction and outlier rejection therefore require a compact linear signal representation that extends over the radial as well as angular domain. Here, we introduce SHARD, a data-driven representation of the q-space signal based on spherical harmonics and a radial decomposition into orthonormal components. This representation provides a complete, orthogonal signal basis, tailored to the spherical geometry of q-space and calibrated to the data at hand. We demonstrate that the rank-reduced decomposition outperforms model-based alternatives in human brain data, whilst faithfully capturing the micro- and meso-structural information in the signal. Furthermore, we validate the potential of joint radial-spherical as compared to single-shell representations. As such, SHARD is optimally suited for applications that require low-rank signal predictions, such as motion correction and outlier rejection. Finally, we illustrate its application for the latter using outlier robust regression.
Acute Lymphoblastic Leukemia (ALL) is a blood cell cancer characterized by numerous immature lymphocytes. Even though automation in ALL prognosis is an essential aspect of cancer diagnosis, it is challenging due to the morphological correlation betwe en malignant and normal cells. The traditional ALL classification strategy demands experienced pathologists to carefully read the cell images, which is arduous, time-consuming, and often suffers inter-observer variations. This article has automated the ALL detection task from microscopic cell images, employing deep Convolutional Neural Networks (CNNs). We explore the weighted ensemble of different deep CNNs to recommend a better ALL cell classifier. The weights for the ensemble candidate models are estimated from their corresponding metrics, such as accuracy, F1-score, AUC, and kappa values. Various data augmentations and pre-processing are incorporated for achieving a better generalization of the network. We utilize the publicly available C-NMC-2019 ALL dataset to conduct all the comprehensive experiments. Our proposed weighted ensemble model, using the kappa values of the ensemble candidates as their weights, has outputted a weighted F1-score of 88.6 %, a balanced accuracy of 86.2 %, and an AUC of 0.941 in the preliminary test set. The qualitative results displaying the gradient class activation maps confirm that the introduced model has a concentrated learned region. In contrast, the ensemble candidate models, such as Xception, VGG-16, DenseNet-121, MobileNet, and InceptionResNet-V2, separately produce coarse and scatter learned areas for most example cases. Since the proposed kappa value-based weighted ensemble yields a better result for the aimed task in this article, it can experiment in other domains of medical diagnostic applications.
The segmentation of prostate whole gland and transition zone in Diffusion Weighted MRI (DWI) are the first step in designing computer-aided detection algorithms for prostate cancer. However, variations in MRI acquisition parameters and scanner manufa cturing result in different appearances of prostate tissue in the images. Convolutional neural networks (CNNs) which have shown to be successful in various medical image analysis tasks including segmentation are typically sensitive to the variations in imaging parameters. This sensitivity leads to poor segmentation performance of CNNs trained on a source cohort and tested on a target cohort from a different scanner and hence, it limits the applicability of CNNs for cross-cohort training and testing. Contouring prostate whole gland and transition zone in DWI images are time-consuming and expensive. Thus, it is important to enable CNNs pretrained on images of source domain, to segment images of target domain with minimum requirement for manual segmentation of images from the target domain. In this work, we propose a transfer learning method based on a modified U-net architecture and loss function, for segmentation of prostate whole gland and transition zone in DWIs using a CNN pretrained on a source dataset and tested on the target dataset. We explore the effect of the size of subset of target dataset used for fine-tuning the pre-trained CNN on the overall segmentation accuracy. Our results show that with a fine-tuning data as few as 30 patients from the target domain, the proposed transfer learning-based algorithm can reach dice score coefficient of 0.80 for both prostate whole gland and transition zone segmentation. Using a fine-tuning data of 115 patients from the target domain, dice score coefficient of 0.85 and 0.84 are achieved for segmentation of whole gland and transition zone, respectively, in the target domain.
Deep learning based generative adversarial networks (GAN) can effectively perform image reconstruction with under-sampled MR data. In general, a large number of training samples are required to improve the reconstruction performance of a certain mode l. However, in real clinical applications, it is difficult to obtain tens of thousands of raw patient data to train the model since saving k-space data is not in the routine clinical flow. Therefore, enhancing the generalizability of a network based on small samples is urgently needed. In this study, three novel applications were explored based on parallel imaging combined with the GAN model (PI-GAN) and transfer learning. The model was pre-trained with public Calgary brain images and then fine-tuned for use in (1) patients with tumors in our center; (2) different anatomies, including knee and liver; (3) different k-space sampling masks with acceleration factors (AFs) of 2 and 6. As for the brain tumor dataset, the transfer learning results could remove the artifacts found in PI-GAN and yield smoother brain edges. The transfer learning results for the knee and liver were superior to those of the PI-GAN model trained with its own dataset using a smaller number of training cases. However, the learning procedure converged more slowly in the knee datasets compared to the learning in the brain tumor datasets. The reconstruction performance was improved by transfer learning both in the models with AFs of 2 and 6. Of these two models, the one with AF=2 showed better results. The results also showed that transfer learning with the pre-trained model could solve the problem of inconsistency between the training and test datasets and facilitate generalization to unseen data.
Medical imaging datasets are inherently high dimensional with large variability and low sample sizes that limit the effectiveness of deep learning algorithms. Recently, generative adversarial networks (GANs) with the ability to synthesize realist ima ges have shown great potential as an alternative to standard data augmentation techniques. Our work focuses on cross-modality synthesis of fluorodeoxyglucose~(FDG) Positron Emission Tomography~(PET) scans from structural Magnetic Resonance~(MR) images using generative models to facilitate multi-modal diagnosis of Alzheimers disease (AD). Specifically, we propose a novel end-to-end, globally and locally aware image-to-image translation GAN (GLA-GAN) with a multi-path architecture that enforces both global structural integrity and fidelity to local details. We further supplement the standard adversarial loss with voxel-level intensity, multi-scale structural similarity (MS-SSIM) and region-of-interest (ROI) based loss components that reduce reconstruction error, enforce structural consistency at different scales and perceive variation in regional sensitivity to AD respectively. Experimental results demonstrate that our GLA-GAN not only generates synthesized FDG-PET scans with enhanced image quality but also superior clinical utility in improving AD diagnosis compared to state-of-the-art models. Finally, we attempt to interpret some of the internal units of the GAN that are closely related to this specific cross-modality generation task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا