ﻻ يوجد ملخص باللغة العربية
Diffusion-weighted MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space, typically acquired in one or more shells. Recent developments in microstructure imaging and multi-tissue decomposition have sparked renewed attention in the radial b-value dependence of the signal. Applications in motion correction and outlier rejection therefore require a compact linear signal representation that extends over the radial as well as angular domain. Here, we introduce SHARD, a data-driven representation of the q-space signal based on spherical harmonics and a radial decomposition into orthonormal components. This representation provides a complete, orthogonal signal basis, tailored to the spherical geometry of q-space and calibrated to the data at hand. We demonstrate that the rank-reduced decomposition outperforms model-based alternatives in human brain data, whilst faithfully capturing the micro- and meso-structural information in the signal. Furthermore, we validate the potential of joint radial-spherical as compared to single-shell representations. As such, SHARD is optimally suited for applications that require low-rank signal predictions, such as motion correction and outlier rejection. Finally, we illustrate its application for the latter using outlier robust regression.
Diffusion MRI offers a unique probe into neural microstructure and connectivity in the developing brain. However, analysis of neonatal brain imaging data is complicated by inevitable subject motion, leading to a series of scattered slices that need t
Current deep learning approaches for diffusion MRI modeling circumvent the need for densely-sampled diffusion-weighted images (DWIs) by directly predicting microstructural indices from sparsely-sampled DWIs. However, they implicitly make unrealistic
Computational models of biophysical tissue properties have been widely used in diffusion MRI (dMRI) research to elucidate the link between microstructural properties and MR signal formation. For brain tissue, the research community has developed the
The integrity of articular cartilage is a crucial aspect in the early diagnosis of osteoarthritis (OA). Many novel MRI techniques have the potential to assess compositional changes of the cartilage extracellular matrix. Among these techniques, diffus
Purpose: Diffusion MRI (dMRI) suffers from eddy currents induced by strong diffusion gradients, which introduce artefacts that can impair subsequent diffusion metric analysis. Existing retrospective correction techniques that correct for diffusion gr