ﻻ يوجد ملخص باللغة العربية
While various nanophotonic structures applicable to relatively thin crystalline silicon-based solar cells were proposed to ensure effective light in-coupling and light trapping in the absorber, it is of great importance to evaluate their performance on the solar module level under realistic irradiation conditions. Here, we analyze the annual energy yield of relatively thin heterojunction (HJT) solar module architectures when optimized anti-reflective and light trapping titanium dioxide (TiO$_2$) nanodisk square arrays are applied on the front and rear cell interfaces. Our numerical study shows that upon reducing crystalline silicon (c-Si) wafer thickness, the relative increase of the annual energy yield can go up to 11.0 %$_text{rel}$ and 43.0 %$_text{rel}$ for mono- and bifacial solar modules, respectively, when compared to the reference modules with flat optimized anti-reflective coatings of HJT solar cells.
Hexagonally aligned, free-standing silicon nanowire (SiNW) arrays serve as photonic resonators which, as compared to a silicon (Si) thin film, do not only absorb more visible (VIS) and near-infrared (NIR) light, but also show an inherent photonic lig
We optimize multilayered anti-reflective coatings for photovoltaic devices, using modern evolutionary algorithms. We apply a rigorous methodology to show that a given structure, which is particularly regular, emerge spontaneously in a very systematic
We closely study the local amplifications of visible light on a thin dielectric slab presenting a sub-wavelength array of small, rectangular, bottom-closed holes. The high-quality Fabry-Perot resonances of eigen modes which vertically oscillate, and
Spatial light modulators (SLMs) are central to numerous applications ranging from high-speed displays to adaptive optics, structured illumination microscopy, and holography. After decades of advances, SLM arrays based on liquid crystals can now reach
We numerically propose an all-dielectric hybrid metamaterial (MM) to realize all-optical switch and logic gates in shortwave infrared (SWIR) band. Such MM consists of one silicon rod and one Ge2Sb2Te5 (GST) rod pair. Utilizing the transition from amo