ترغب بنشر مسار تعليمي؟ اضغط هنا

Give Me Your Trained Model: Domain Adaptive Semantic Segmentation without Source Data

285   0   0.0 ( 0 )
 نشر من قبل YuXi Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Benefited from considerable pixel-level annotations collected from a specific situation (source), the trained semantic segmentation model performs quite well, but fails in a new situation (target) due to the large domain shift. To mitigate the domain gap, previous cross-domain semantic segmentation methods always assume the co-existence of source data and target data during distribution alignment. However, the access to source data in the real scenario may raise privacy concerns and violate intellectual property. To tackle this problem, we focus on an interesting and challenging cross-domain semantic segmentation task where only the trained source model is provided to the target domain, and further propose a unified framework called Domain Adaptive Semantic Segmentation without Source data (DAS$^3$ for short). Specifically, DAS$^3$ consists of three schemes, i.e., feature alignment, self-training, and information propagation. First, we mainly develop a focal entropic loss on the network outputs to implicitly align the target features with unseen source features via the provided source model. Second, besides positive pseudo labels in vanilla self-training, we first introduce negative pseudo labels to the field and develop a bi-directional self-training strategy to enhance the representation learning in the target domain. Finally, the information propagation scheme further reduces the intra-domain discrepancy within the target domain via pseudo semi-supervised learning. Extensive results on synthesis-to-real and cross-city driving datasets validate DAS$^3$ yields state-of-the-art performance, even on par with methods that need access to source data.



قيم البحث

اقرأ أيضاً

Unsupervised domain adaptation (DA) has gained substantial interest in semantic segmentation. However, almost all prior arts assume concurrent access to both labeled source and unlabeled target, making them unsuitable for scenarios demanding source-f ree adaptation. In this work, we enable source-free DA by partitioning the task into two: a) source-only domain generalization and b) source-free target adaptation. Towards the former, we provide theoretical insights to develop a multi-head framework trained with a virtually extended multi-source dataset, aiming to balance generalization and specificity. Towards the latter, we utilize the multi-head framework to extract reliable target pseudo-labels for self-training. Additionally, we introduce a novel conditional prior-enforcing auto-encoder that discourages spatial irregularities, thereby enhancing the pseudo-label quality. Experiments on the standard GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes benchmarks show our superiority even against the non-source-free prior-arts. Further, we show our compatibility with online adaptation enabling deployment in a sequentially changing environment.
Learning semantic segmentation models requires a huge amount of pixel-wise labeling. However, labeled data may only be available abundantly in a domain different from the desired target domain, which only has minimal or no annotations. In this work, we propose a novel framework for domain adaptation in semantic segmentation with image-level weak labels in the target domain. The weak labels may be obtained based on a model prediction for unsupervised domain adaptation (UDA), or from a human annotator in a new weakly-supervised domain adaptation (WDA) paradigm for semantic segmentation. Using weak labels is both practical and useful, since (i) collecting image-level target annotations is comparably cheap in WDA and incurs no cost in UDA, and (ii) it opens the opportunity for category-wise domain alignment. Our framework uses weak labels to enable the interplay between feature alignment and pseudo-labeling, improving both in the process of domain adaptation. Specifically, we develop a weak-label classification module to enforce the network to attend to certain categories, and then use such training signals to guide the proposed category-wise alignment method. In experiments, we show considerable improvements with respect to the existing state-of-the-arts in UDA and present a new benchmark in the WDA setting. Project page is at http://www.nec-labs.com/~mas/WeakSegDA.
131 - Yuang Liu , Wei Zhang , Jun Wang 2021
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network(CNN)-based approaches for semantic segmentation heavily rely on the pixel-level annotated data, which is labor-intensive. However, existing UDA approaches in this regard inevitably require the full access to source datasets to reduce the gap between the source and target domains during model adaptation, which are impractical in the real scenarios where the source datasets are private, and thus cannot be released along with the well-trained source models. To cope with this issue, we propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation. SFDA not only enables to recover and preserve the source domain knowledge from the source model via knowledge transfer during model adaptation, but also distills valuable information from the target domain for self-supervised learning. The pixel- and patch-level optimization objectives tailored for semantic segmentation are seamlessly integrated in the framework. The extensive experimental results on numerous benchmark datasets highlight the effectiveness of our framework against the existing UDA approaches relying on source data.
Unsupervised domain adaptation (UDA) aims to adapt a model of the labeled source domain to an unlabeled target domain. Although the domain shifts may exist in various dimensions such as appearance, textures, etc, the contextual dependency, which is g enerally shared across different domains, is neglected by recent methods. In this paper, we utilize this important clue as explicit prior knowledge and propose end-to-end Context-Aware Mixup (CAMix) for domain adaptive semantic segmentation. Firstly, we design a contextual mask generation strategy by leveraging accumulated spatial distributions and contextual relationships. The generated contextual mask is critical in this work and will guide the domain mixup. In addition, we define the significance mask to indicate where the pixels are credible. To alleviate the over-alignment (e.g., early performance degradation), the source and target significance masks are mixed based on the contextual mask into the mixed significance mask, and we introduce a significance-reweighted consistency loss on it. Experimental results show that the proposed method outperforms the state-of-the-art methods by a large margin on two widely-used domain adaptation benchmarks, i.e., GTAV $rightarrow $ Cityscapes and SYNTHIA $rightarrow $ Cityscapes.
297 - Yawei Luo , Ping Liu , Tao Guan 2019
For unsupervised domain adaptation problems, the strategy of aligning the two domains in latent feature space through adversarial learning has achieved much progress in image classification, but usually fails in semantic segmentation tasks in which t he latent representations are overcomplex. In this work, we equip the adversarial network with a significance-aware information bottleneck (SIB), to address the above problem. The new network structure, called SIBAN, enables a significance-aware feature purification before the adversarial adaptation, which eases the feature alignment and stabilizes the adversarial training course. In two domain adaptation tasks, i.e., GTA5 -> Cityscapes and SYNTHIA -> Cityscapes, we validate that the proposed method can yield leading results compared with other feature-space alternatives. Moreover, SIBAN can even match the state-of-the-art output-space methods in segmentation accuracy, while the latter are often considered to be better choices for domain adaptive segmentation task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا