ترغب بنشر مسار تعليمي؟ اضغط هنا

Context-Aware Mixup for Domain Adaptive Semantic Segmentation

135   0   0.0 ( 0 )
 نشر من قبل Qianyu Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised domain adaptation (UDA) aims to adapt a model of the labeled source domain to an unlabeled target domain. Although the domain shifts may exist in various dimensions such as appearance, textures, etc, the contextual dependency, which is generally shared across different domains, is neglected by recent methods. In this paper, we utilize this important clue as explicit prior knowledge and propose end-to-end Context-Aware Mixup (CAMix) for domain adaptive semantic segmentation. Firstly, we design a contextual mask generation strategy by leveraging accumulated spatial distributions and contextual relationships. The generated contextual mask is critical in this work and will guide the domain mixup. In addition, we define the significance mask to indicate where the pixels are credible. To alleviate the over-alignment (e.g., early performance degradation), the source and target significance masks are mixed based on the contextual mask into the mixed significance mask, and we introduce a significance-reweighted consistency loss on it. Experimental results show that the proposed method outperforms the state-of-the-art methods by a large margin on two widely-used domain adaptation benchmarks, i.e., GTAV $rightarrow $ Cityscapes and SYNTHIA $rightarrow $ Cityscapes.



قيم البحث

اقرأ أيضاً

In this paper, we consider the problem of unsupervised domain adaptation in the semantic segmentation. There are two primary issues in this field, i.e., what and how to transfer domain knowledge across two domains. Existing methods mainly focus on ad apting domain-invariant features (what to transfer) through adversarial learning (how to transfer). Context dependency is essential for semantic segmentation, however, its transferability is still not well understood. Furthermore, how to transfer contextual information across two domains remains unexplored. Motivated by this, we propose a cross-attention mechanism based on self-attention to capture context dependencies between two domains and adapt transferable context. To achieve this goal, we design two cross-domain attention modules to adapt context dependencies from both spatial and channel views. Specifically, the spatial attention module captures local feature dependencies between each position in the source and target image. The channel attention module models semantic dependencies between each pair of cross-domain channel maps. To adapt context dependencies, we further selectively aggregate the context information from two domains. The superiority of our method over existing state-of-the-art methods is empirically proved on GTA5 to Cityscapes and SYNTHIA to Cityscapes.
297 - Yawei Luo , Ping Liu , Tao Guan 2019
For unsupervised domain adaptation problems, the strategy of aligning the two domains in latent feature space through adversarial learning has achieved much progress in image classification, but usually fails in semantic segmentation tasks in which t he latent representations are overcomplex. In this work, we equip the adversarial network with a significance-aware information bottleneck (SIB), to address the above problem. The new network structure, called SIBAN, enables a significance-aware feature purification before the adversarial adaptation, which eases the feature alignment and stabilizes the adversarial training course. In two domain adaptation tasks, i.e., GTA5 -> Cityscapes and SYNTHIA -> Cityscapes, we validate that the proposed method can yield leading results compared with other feature-space alternatives. Moreover, SIBAN can even match the state-of-the-art output-space methods in segmentation accuracy, while the latter are often considered to be better choices for domain adaptive segmentation task.
Zero padding is widely used in convolutional neural networks to prevent the size of feature maps diminishing too fast. However, it has been claimed to disturb the statistics at the border. As an alternative, we propose a context-aware (CA) padding ap proach to extend the image. We reformulate the padding problem as an image extrapolation problem and illustrate the effects on the semantic segmentation task. Using context-aware padding, the ResNet-based segmentation model achieves higher mean Intersection-Over-Union than the traditional zero padding on the Cityscapes and the dataset of DeepGlobe satellite imaging challenge. Furthermore, our padding does not bring noticeable overhead during training and testing.
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods demonstrate that using global context for re-weighting feature channels can effectively improve the accuracy of semantic segmentation. However, the globally-sharing feature re-weighting vector might not be optimal for regions of different classes in the input image. In this paper, we propose a Context-adaptive Convolution Network (CaC-Net) to predict a spatially-varying feature weighting vector for each spatial location of the semantic feature maps. In CaC-Net, a set of context-adaptive convolution kernels are predicted from the global contextual information in a parameter-efficient manner. When used for convolution with the semantic feature maps, the predicted convolutional kernels can generate the spatially-varying feature weighting factors capturing both global and local contextual information. Comprehensive experimental results show that our CaC-Net achieves superior segmentation performance on three public datasets, PASCAL Context, PASCAL VOC 2012 and ADE20K.
Unsupervised domain adaptation (UDA) aims to adapt existing models of the source domain to a new target domain with only unlabeled data. Most existing methods suffer from noticeable negative transfer resulting from either the error-prone discriminato r network or the unreasonable teacher model. Besides, the local regional consistency in UDA has been largely neglected, and only extracting the global-level pattern information is not powerful enough for feature alignment due to the abuse use of contexts. To this end, we propose an uncertainty-aware consistency regularization method for cross-domain semantic segmentation. Firstly, we introduce an uncertainty-guided consistency loss with a dynamic weighting scheme by exploiting the latent uncertainty information of the target samples. As such, more meaningful and reliable knowledge from the teacher model can be transferred to the student model. We further reveal the reason why the current consistency regularization is often unstable in minimizing the domain discrepancy. Besides, we design a ClassDrop mask generation algorithm to produce strong class-wise perturbations. Guided by this mask, we propose a ClassOut strategy to realize effective regional consistency in a fine-grained manner. Experiments demonstrate that our method outperforms the state-of-the-art methods on four domain adaptation benchmarks, i.e., GTAV $rightarrow $ Cityscapes and SYNTHIA $rightarrow $ Cityscapes, Virtual KITTI $rightarrow$ KITTI and Cityscapes $rightarrow$ KITTI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا