ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalize then Adapt: Source-Free Domain Adaptive Semantic Segmentation

126   0   0.0 ( 0 )
 نشر من قبل Jogendra Nath Kundu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised domain adaptation (DA) has gained substantial interest in semantic segmentation. However, almost all prior arts assume concurrent access to both labeled source and unlabeled target, making them unsuitable for scenarios demanding source-free adaptation. In this work, we enable source-free DA by partitioning the task into two: a) source-only domain generalization and b) source-free target adaptation. Towards the former, we provide theoretical insights to develop a multi-head framework trained with a virtually extended multi-source dataset, aiming to balance generalization and specificity. Towards the latter, we utilize the multi-head framework to extract reliable target pseudo-labels for self-training. Additionally, we introduce a novel conditional prior-enforcing auto-encoder that discourages spatial irregularities, thereby enhancing the pseudo-label quality. Experiments on the standard GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes benchmarks show our superiority even against the non-source-free prior-arts. Further, we show our compatibility with online adaptation enabling deployment in a sequentially changing environment.



قيم البحث

اقرأ أيضاً

131 - Yuang Liu , Wei Zhang , Jun Wang 2021
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network(CNN)-based approaches for semantic segmentation heavily rely on the pixel-level annotated data, which is labor-intensive. However, existing UDA approaches in this regard inevitably require the full access to source datasets to reduce the gap between the source and target domains during model adaptation, which are impractical in the real scenarios where the source datasets are private, and thus cannot be released along with the well-trained source models. To cope with this issue, we propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation. SFDA not only enables to recover and preserve the source domain knowledge from the source model via knowledge transfer during model adaptation, but also distills valuable information from the target domain for self-supervised learning. The pixel- and patch-level optimization objectives tailored for semantic segmentation are seamlessly integrated in the framework. The extensive experimental results on numerous benchmark datasets highlight the effectiveness of our framework against the existing UDA approaches relying on source data.
111 - Xin Luo , Wei Chen , Yusong Tan 2021
It is desirable to transfer the knowledge stored in a well-trained source model onto non-annotated target domain in the absence of source data. However, state-of-the-art methods for source free domain adaptation (SFDA) are subject to strict limits: 1 ) access to internal specifications of source models is a must; and 2) pseudo labels should be clean during self-training, making critical tasks relying on semantic segmentation unreliable. Aiming at these pitfalls, this study develops a domain adaptive solution to semantic segmentation with pseudo label rectification (namely textit{PR-SFDA}), which operates in two phases: 1) textit{Confidence-regularized unsupervised learning}: Maximum squares loss applies to regularize the target model to ensure the confidence in prediction; and 2) textit{Noise-aware pseudo label learning}: Negative learning enables tolerance to noisy pseudo labels in training, meanwhile positive learning achieves fast convergence. Extensive experiments have been performed on domain adaptive semantic segmentation benchmark, textit{GTA5 $to$ Cityscapes}. Overall, textit{PR-SFDA} achieves a performance of 49.0 mIoU, which is very close to that of the state-of-the-art counterparts. Note that the latter demand accesses to the source models internal specifications, whereas the textit{PR-SFDA} solution needs none as a sharp contrast.
Most modern approaches for domain adaptive semantic segmentation rely on continued access to source data during adaptation, which may be infeasible due to computational or privacy constraints. We focus on source-free domain adaptation for semantic se gmentation, wherein a source model must adapt itself to a new target domain given only unlabeled target data. We propose Self-Supervised Selective Self-Training (S4T), a source-free adaptation algorithm that first uses the models pixel-level predictive consistency across diverse views of each target image along with model confidence to classify pixel predictions as either reliable or unreliable. Next, the model is self-trained, using predicted pseudolabels for reliable predictions and pseudolabels inferred via a selective interpolation strategy for unreliable ones. S4T matches or improves upon the state-of-the-art in source-free adaptation on 3 standard benchmarks for semantic segmentation within a single epoch of adaptation.
Deep learning has achieved remarkable success in medicalimage segmentation, but it usually requires a large numberof images labeled with fine-grained segmentation masks, andthe annotation of these masks can be very expensive andtime-consuming. Theref ore, recent methods try to use un-supervised domain adaptation (UDA) methods to borrow in-formation from labeled data from other datasets (source do-mains) to a new dataset (target domain). However, due tothe absence of labels in the target domain, the performance ofUDA methods is much worse than that of the fully supervisedmethod. In this paper, we propose a weakly supervised do-main adaptation setting, in which we can partially label newdatasets with bounding boxes, which are easier and cheaperto obtain than segmentation masks. Accordingly, we proposea new weakly-supervised domain adaptation method calledBox-Adapt, which fully explores the fine-grained segmenta-tion mask in the source domain and the weak bounding boxin the target domain. Our Box-Adapt is a two-stage methodthat first performs joint training on the source and target do-mains, and then conducts self-training with the pseudo-labelsof the target domain. We demonstrate the effectiveness of ourmethod in the liver segmentation task. Weakly supervised do-main adaptation
Benefited from considerable pixel-level annotations collected from a specific situation (source), the trained semantic segmentation model performs quite well, but fails in a new situation (target) due to the large domain shift. To mitigate the domain gap, previous cross-domain semantic segmentation methods always assume the co-existence of source data and target data during distribution alignment. However, the access to source data in the real scenario may raise privacy concerns and violate intellectual property. To tackle this problem, we focus on an interesting and challenging cross-domain semantic segmentation task where only the trained source model is provided to the target domain, and further propose a unified framework called Domain Adaptive Semantic Segmentation without Source data (DAS$^3$ for short). Specifically, DAS$^3$ consists of three schemes, i.e., feature alignment, self-training, and information propagation. First, we mainly develop a focal entropic loss on the network outputs to implicitly align the target features with unseen source features via the provided source model. Second, besides positive pseudo labels in vanilla self-training, we first introduce negative pseudo labels to the field and develop a bi-directional self-training strategy to enhance the representation learning in the target domain. Finally, the information propagation scheme further reduces the intra-domain discrepancy within the target domain via pseudo semi-supervised learning. Extensive results on synthesis-to-real and cross-city driving datasets validate DAS$^3$ yields state-of-the-art performance, even on par with methods that need access to source data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا