ترغب بنشر مسار تعليمي؟ اضغط هنا

A deep learning method for solving high-order nonlinear soliton equation

80   0   0.0 ( 0 )
 نشر من قبل Shikun Cui
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose effective scheme of deep learning method for high-order nonlinear soliton equation and compare the activation function for high-order soliton equation. The neural network approximates the solution of the equation under the conditions of differential operator, initial condition and boundary condition. We apply this method to high-order nonlinear soliton equation, and verify its efficiency by solving the fourth-order Boussinesq equation and the fifth-order Korteweg de Vries equation. The results show that deep learning method can solve the high-order nonlinear soliton equation and reveal the interaction between solitons.



قيم البحث

اقرأ أيضاً

107 - Quanhui Zhu , Jiang Yang 2021
At present, deep learning based methods are being employed to resolve the computational challenges of high-dimensional partial differential equations (PDEs). But the computation of the high order derivatives of neural networks is costly, and high ord er derivatives lack robustness for training purposes. We propose a novel approach to solving PDEs with high order derivatives by simultaneously approximating the function value and derivatives. We introduce intermediate variables to rewrite the PDEs into a system of low order differential equations as what is done in the local discontinuous Galerkin method. The intermediate variables and the solutions to the PDEs are simultaneously approximated by a multi-output deep neural network. By taking the residual of the system as a loss function, we can optimize the network parameters to approximate the solution. The whole process relies on low order derivatives. Numerous numerical examples are carried out to demonstrate that our local deep learning is efficient, robust, flexible, and is particularly well-suited for high-dimensional PDEs with high order derivatives.
Solitons and breathers are localized solutions of integrable systems that can be viewed as particles of complex statistical objects called soliton and breather gases. In view of the growing evidence of their ubiquity in fluids and nonlinear optical m edia these integrable gases present fundamental interest for nonlinear physics. We develop analytical theory of breather and soliton gases by considering a special, thermodynamic type limit of the wavenumber-frequency relations for multi-phase (finite-gap) solutions of the focusing nonlinear Schrodinger equation. This limit is defined by the locus and the critical scaling of the band spectrum of the associated Zakharov-Shabat operator and yields the nonlinear dispersion relations for a spatially homogeneous breather or soliton gas, depending on the presence or absence of the background Stokes mode. The key quantity of interest is the density of states defining, in principle, all spectral and statistical properties of a soliton (breather) gas. The balance of terms in the nonlinear dispersion relations determines the nature of the gas: from an ideal gas of well separated, non-interacting breathers (solitons) to a special limiting state, which we term breather (soliton) condensate, and whose properties are entirely determined by the pairwise interactions between breathes (solitons). For a non-homogeneous breather gas, we derive a full set of kinetic equations describing slow evolution of the density of states and of its carrier wave counterpart. The kinetic equation for soliton gas is recovered by collapsing the Stokes spectral band. A number of concrete examples of breather and soliton gases are considered, demonstrating efficacy of the developed general theory with broad implications for nonlinear optics, superfluids and oceanography.
We study the dynamics and pairwise interactions of dark soliton stripes in the two-dimensional defocusing nonlinear Schrodinger equation. By employing a variational approach we reduce the dynamics for dark soliton stripes to a set of coupled one-dime nsional filament equations of motion for the position and velocity of the stripe. The method yields good qualitative agreement with the numerical results as regards the transverse instability of the stripes. We propose a phenomenological amendment that also significantly improves the quantitative agreement of the method with the computations. Subsequently, the method is extended for a pair of symmetric dark soliton stripes that include the mutual interactions between the filaments. The reduced equations of motion are compared with a recently proposed adiabatic invariant method and its corresponding findings and are found to provide a more adequate representation of the original full dynamics for a wide range of cases encompassing perturbations with long and short wavelengths, and combinations thereof.
In this work we propose and analyze a novel Hybrid High-Order discretization of a class of (linear and) nonlinear elasticity models in the small deformation regime which are of common use in solid mechanics. The proposed method is valid in two and th ree space dimensions, it supports general meshes including polyhedral elements and nonmatching interfaces, enables arbitrary approximation order, and the resolution cost can be reduced by statically condensing a large subset of the unknowns for lineariz
Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics at the leading order. Despite significant theoretical developments and observational evidence of ubiquity of soliton gases in fluids and optic al media their controlled experimental realization has been missing. We report the first controlled synthesis of a dense soliton gas in deep-water surface gravity waves using the tools of nonlinear spectral theory (inverse scattering transform (IST)) for the one-dional focusing nonlinear Schrodinger equation. The soliton gas is experimentally generated in a one-dimensional water tank where we demonstrate that we can control and measure the density of states, i. e. the probability density function parametrizing the soliton gas in the IST spectral phase space. Nonlinear spectral analysis of the generated hydrodynamic soliton gas reveals that the density of states slowly changes under the influence of perturbative higher-order effects that break the integrability of the wave dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا