ﻻ يوجد ملخص باللغة العربية
We study the dynamics and pairwise interactions of dark soliton stripes in the two-dimensional defocusing nonlinear Schrodinger equation. By employing a variational approach we reduce the dynamics for dark soliton stripes to a set of coupled one-dimensional filament equations of motion for the position and velocity of the stripe. The method yields good qualitative agreement with the numerical results as regards the transverse instability of the stripes. We propose a phenomenological amendment that also significantly improves the quantitative agreement of the method with the computations. Subsequently, the method is extended for a pair of symmetric dark soliton stripes that include the mutual interactions between the filaments. The reduced equations of motion are compared with a recently proposed adiabatic invariant method and its corresponding findings and are found to provide a more adequate representation of the original full dynamics for a wide range of cases encompassing perturbations with long and short wavelengths, and combinations thereof.
We consider the dynamics and stability of bright soliton stripes in the two-dimensional nonlinear Schrodinger equation with hyperbolic dispersion, under the action of transverse perturbations. We start by discussing a recently proposed adiabatic-inva
By using the Darboux transformation, we obtain two new types of exponential-and-rational mixed soliton solutions for the defocusing nonlocal nonlinear Schrodinger equation. We reveal that the first type of solution can display a large variety of inte
Solitons and breathers are localized solutions of integrable systems that can be viewed as particles of complex statistical objects called soliton and breather gases. In view of the growing evidence of their ubiquity in fluids and nonlinear optical m
We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analysing the case of the semiclassical defocusing nonlinear Schrodinger equation, which models nonlinear wave prop
We discuss the finite-time collapse, also referred as blow-up, of the solutions of a discrete nonlinear Schr{o}dinger (DNLS) equation incorporating linear and nonlinear gain and loss. This DNLS system appears in many inherently discrete physical cont