ترغب بنشر مسار تعليمي؟ اضغط هنا

Design Principles for High Temperature Superconductors with Hydrogen-based Alloy Backbone at Moderate Pressure

273   0   0.0 ( 0 )
 نشر من قبل Defang Duan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hydrogen-based superconductors provide a route to the long-sought goal of room-temperature superconductivity, but the high pressures required to metallize these materials limit their immediate application. For example, carbonaceous sulfur hydride, the first room-temperature superconductor, can reach a critical temperature (Tc) of 288 K only at the extreme pressure of 267 GPa. The next recognized challenge is the realization of room-temperature superconductivity at significantly lower pressures. Here, we propose a strategy for the rational design of high-temperature superconductors at low pressures by alloying small-radius elements and hydrogen to form ternary hydride superconductors with alloy backbones. We identify a hitherto unknown fluorite-type backbone in compositions of the form AXH8, which exhibit high temperature superconductivity at moderate pressures. The Fm-3m phase of LaBeH8, with a fluorite-type H-Be alloy backbone, is predicted to be metastable and superconducting with a Tc ~ 191 K at 50 GPa; a substantially lower pressure than that required by the geometrically similar clathrate hydride LaH10 (170 GPa). Our approach paves the way for finding high-Tc ternary hydride superconductors at conditions close to ambient pressures.



قيم البحث

اقرأ أيضاً

We study hydrogen doping effects in an iron-based superconductor LaFeAsO_(1-y) by using the first-principles calculation and explore the reason why the superconducting transition temperature is remarkably enhanced by the hydrogen doping. The present calculations reveal that a hydrogen cation stably locating close to an iron atom attracts a negatively-charged FeAs layer and results in structural distortion favorable for further high temperature transition. In fact, the lattice constant a averaged over the employed supercell shrinks and then the averaged As-Fe-As angle approaches 109.74 degrees with increasing the hydrogen doping amount. Moreover, the calculations clarify electron doping effects of the solute hydrogen and resultant Fermi-level shift. These insights are useful for design of high transition-temperature iron-based superconductors.
Two hydrogen-rich materials, H$_3$S and LaH$_{10}$, synthesized at megabar pressures, have revolutionized the field of condensed matter physics providing the first glimpse to the solution of the hundred-year-old problem of room temperature supercondu ctivity. The mechanism underlying superconductivity in these exceptional compounds is the conventional electron-phonon coupling. Here we describe recent advances in experimental techniques, superconductivity theory and first-principles computational methods which have made possible these discoveries. This work aims to provide an up-to-date compendium of the available results on superconducting hydrides and explain how the synergy of different methodologies led to extraordinary discoveries in the field. Besides, in an attempt to evidence empirical rules governing superconductivity in binary hydrides under pressure, we discuss general trends in the electronic structure and chemical bonding. The last part of the Review introduces possible strategies to optimize pressure and transition temperatures in conventional superconducting materials as well as future directions in theoretical, computational and experimental research.
223 - K. Tanaka , J. S. Tse , 2017
The mechanisms for strong electron-phonon coupling predicted for hydrogen-rich alloys with high superconducting critical temperature ($T_c$) are examined within the Migdal-Eliashberg theory. Analysis of the functional derivative of $T_c$ with respect to the electron-phonon spectral function shows that at low pressures, when the alloys often adopt layered structures, bending vibrations have the most dominant effect. At very high pressures, the H-H interactions in two-dimensional (2D) and three-dimensional (3D) extended structures are weakened, resulting in mixed bent (libration) and stretch vibrations, and the electron-phonon coupling process is distributed over a broad frequency range leading to very high $T_c$.
We report on the synthesis and superconductivity of high-entropy-alloy-type (HEA-type) compounds TrZr2 (Tr = Fe, Co, Ni, Rh, Ir), in which the Tr site satisfies the criterion of HEA. Polycrystalline samples of HEA-type TrZr2 with four different compo sitions at the Tr site were synthesized by arc melting method. The phase purity and crystal structure were examined by Rietveld refinement of X-ray diffraction profile. It has been confirmed that the obtained samples have a CuAl2-type tetragonal structure. From analyses of elemental composition and mixing entropy at the Tr site, the HEA state for the Tr site was confirmed. The physical properties of obtained samples were characterized by electrical resistivity and magnetization measurements. All the samples show bulk superconductivity with various transition temperature (Tc). The Tc varied according to the compositions and showed correlations with the lattice constant c and Tr-Zr bond lengths. Introduction of an HEA site in TrZr2 is useful to achieve systematic tuning of Tc with a wide temperature range, which would be a merit for superconductivity application.
The presence of different electronic orders other than superconductivity populating the phase diagram of cuprates suggests that they might be the key to disclose the mysteries of this class of materials. In particular charge order in the form of char ge density waves (CDW), i.e., the incommensurate modulation of electron density in the CuO$_2$ planes, is ubiquitous across different families and presents a clear interplay with superconductivity. Until recently, CDW had been found to be confined inside a rather small region of the phase diagram, below the pseudogap temperature and the optimal doping. This occurrence might shed doubts on the possibility that such low temperature phenomenon actually rules the properties of cuprates either in the normal or in the superconducting states. However, recent resonant X-ray scattering (RXS) experiments are overturning this paradigm. It results that very short-ranged charge modulations permeate a much wider region of the phase diagram, coexisting with CDW at lower temperatures and persisting up to temperatures well above the pseudogap opening. Here we review the characteristics of these high temperature charge modulations, which are present in several cuprate families, with similarities and differences. A particular emphasis is put on their dynamical character and on their coupling to lattice and magnetic excitations, properties that can be determined with high resolution resonant inelastic x-ray scattering (RIXS).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا