ﻻ يوجد ملخص باللغة العربية
We report on the synthesis and superconductivity of high-entropy-alloy-type (HEA-type) compounds TrZr2 (Tr = Fe, Co, Ni, Rh, Ir), in which the Tr site satisfies the criterion of HEA. Polycrystalline samples of HEA-type TrZr2 with four different compositions at the Tr site were synthesized by arc melting method. The phase purity and crystal structure were examined by Rietveld refinement of X-ray diffraction profile. It has been confirmed that the obtained samples have a CuAl2-type tetragonal structure. From analyses of elemental composition and mixing entropy at the Tr site, the HEA state for the Tr site was confirmed. The physical properties of obtained samples were characterized by electrical resistivity and magnetization measurements. All the samples show bulk superconductivity with various transition temperature (Tc). The Tc varied according to the compositions and showed correlations with the lattice constant c and Tr-Zr bond lengths. Introduction of an HEA site in TrZr2 is useful to achieve systematic tuning of Tc with a wide temperature range, which would be a merit for superconductivity application.
Research on high-entropy-alloy (HEA) superconductors is a growing field in material science. In this study, we explored new HEA-type superconductors and discovered a CuAl2-type superconductor Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a HEA-type transition me
Studies on high-entropy alloy (HEA) superconductors have recently been increasing, particularly in the fields of materials science and condensed matter physics. To contribute to research on new HEA-type superconductors, in our study we synthesized po
we were able to develop a novel method to synthesize Fe-based oxypnictide superconductors. By using LnAs and FeO as the starting materials and a ball-milling process prior to solid-state sintering, Tc as high as 50.7 K was obtained with the sample of
Magnetic skyrmions are nanoscale topological spin structures offering great promise for next-generation information storage technologies. The recent discovery of sub-100 nm room temperature (RT) skyrmions in several multilayer films has triggered vig
We predict Co-based chalcogenides with a diamond-like structure can host unconventional high temperature superconductivity (high-$T_c$). The essential electronic physics in these materials stems from the Co layers with each layer being formed by vert