ﻻ يوجد ملخص باللغة العربية
The mechanisms for strong electron-phonon coupling predicted for hydrogen-rich alloys with high superconducting critical temperature ($T_c$) are examined within the Migdal-Eliashberg theory. Analysis of the functional derivative of $T_c$ with respect to the electron-phonon spectral function shows that at low pressures, when the alloys often adopt layered structures, bending vibrations have the most dominant effect. At very high pressures, the H-H interactions in two-dimensional (2D) and three-dimensional (3D) extended structures are weakened, resulting in mixed bent (libration) and stretch vibrations, and the electron-phonon coupling process is distributed over a broad frequency range leading to very high $T_c$.
Electron-phonon coupling, being one of the most important parameters governing the material evolution after ultrafast energy deposition, yet remains the most unexplored one. In this work, we applied the dynamical coupling approach to calculate the no
We use first principles calculations to study structural, vibrational and superconducting properties of H$_2$S at pressures $Pge 200$ GPa. The inclusion of zero point energy leads to two different possible dissociations of H$_2$S, namely 3H$_2$S $to$
Linear response methods are applied to identify the increase in electron-phonon coupling in elemental yttrium that is responsible for its high superconducting critical temperature Tc, which reaches nearly 20 K at 115 GPa. While the evolution of the b
Coupling between electrons and phonons (lattice vibrations) drives the formation of the electron pairs responsible for conventional superconductivity. The lack of direct evidence for electron-phonon coupling in the electron dynamics of the high trans
The title compound is investigated by specific heat measurements in the normal and superconducting state supplemented by upper critical field transport, susceptibility and magnetization measurements. From a detailed analysis including also full poten