ترغب بنشر مسار تعليمي؟ اضغط هنا

The MOSDEF Survey: the Variation of the Dust Attenuation Curve with Metallicity

72   0   0.0 ( 0 )
 نشر من قبل Irene Shivaei
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the UV-optical stellar dust attenuation curve of galaxies at z=1.4-2.6 as a function of gas-phase metallicity. We use a sample of 218 star-forming galaxies, excluding those with very young or heavily obscured star formation, from the MOSFIRE Deep Evolution Field (MOSDEF) survey with H$alpha$, H$beta$, and [NII]$lambda 6585$ spectroscopic measurements. We constrain the shape of the attenuation curve by comparing the average flux densities of galaxies sorted into bins of dust obscuration using Balmer decrements, i.e., H$alpha$-to-H$beta$ luminosities. The average attenuation curve for the high-metallicity sample (12+log(O/H)>8.5, corresponding to $M_*gtrsim10^{10.4},M_{odot}$) has a shallow slope, identical to that of the Calzetti local starburst curve, and a significant UV 2175A extinction bump that is $sim 0.5times$ the strength of the Milky Way bump. On the other hand, the average attenuation curve of the low-metallicity sample (12+log(O/H) $sim 8.2-8.5$) has a steeper slope similar to that of the SMC curve, only consistent with the Calzetti slope at the $3sigma$ level. The UV bump is not detected in the low-metallicity curve, indicating the relative lack of the small dust grains causing the bump at low metallicities. Furthermore, we find that on average the nebular reddening (E(B-V)) is a factor of 2 times larger than that of the stellar continuum for galaxies with low metallicities, while the nebular and stellar reddening are similar for galaxies with higher metallicities. The latter is likely due to a high surface density of dusty clouds embedding the star forming regions but also reddening the continuum in the high-metallicity galaxies.



قيم البحث

اقرأ أيضاً

We use a sample of 532 star-forming galaxies at redshifts $zsim 1.4-2.6$ with deep rest-frame optical spectra from the MOSFIRE Deep Evolution Field (MOSDEF) survey to place the first constraints on the nebular attenuation curve at high redshift. Base d on the first five low-order Balmer emission lines detected in the composite spectra of these galaxies (${rm Halpha}$ through ${rm Hepsilon}$), we derive a nebular attenuation curve that is similar in shape to that of the Galactic extinction curve, suggesting that the dust covering fraction and absorption/scattering properties along the lines-of-sight to massive stars at high redshift are similar to those of the average Milky Way sightline. The curve derived here implies nebular reddening values that are on average systematically larger than those derived for the stellar continuum. In the context of stellar population synthesis models that include the effects of stellar multiplicity, the difference in reddening of the nebular lines and stellar continuum may imply molecular cloud crossing timescales that are a factor of $gtrsim 3times$ longer than those inferred for local molecular clouds, star-formation rates that are constant or increasing with time such that newly-formed and dustier OB associations always dominate the ionizing flux, and/or that the dust responsible for reddening the nebular emission may be associated with non-molecular (i.e., ionized and neutral) phases of the ISM. Our analysis points to a variety of investigations of the nebular attenuation curve that will be enabled with the next generation of ground- and space-based facilities.
We present results on the dust attenuation curve of z~2 galaxies using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey. Our sample consists of 224 star-forming galaxies with nebular spectroscopic redshifts in the range z= 1.3 6-2.59 and high S/N measurements of, or upper limits on, the H-alpha and H-beta emission lines obtained with Keck/MOSFIRE. We construct composite SEDs of galaxies in bins of specific SFR and Balmer optical depth in order to directly constrain the dust attenuation curve from the UV through near-IR for typical star-forming galaxies at high redshift. Our results imply an attenuation curve that is very similar to the SMC extinction curve at wavelengths redward of 2500 Angstroms. At shorter wavelengths, the shape of the curve is identical to that of the Calzetti relation, but with a lower normalization (R_V). Hence, the new attenuation curve results in SFRs that are ~20% lower, and log stellar masses that are 0.16 dex lower, than those obtained with the Calzetti attenuation curve. Moreover, we find that the difference in the reddening---and the total attenuation---of the ionized gas and stellar continuum correlates strongly with SFR, such that for dust-corrected SFRs larger than 20 Msun/yr assuming a Chabrier IMF, the nebular emission lines suffer an increasing degree of obscuration relative to the continuum. A simple model that can account for these trends is one in which the UV through optical stellar continuum is dominated by a population of less reddened stars, while the nebular line and bolometric luminosities become increasingly dominated by dustier stellar populations for galaxies with large SFRs, as a result of the increased dust enrichment that accompanies such galaxies. Consequently, UV- and SED-based SFRs may underestimate the total SFR at even modest levels of ~20 Msun/yr. [Abridged]
We investigate the evolution of galaxy gas-phase metallicity (O/H) over the range $z=0-3.3$ using samples of $sim300$ galaxies at $zsim2.3$ and $sim150$ galaxies at $zsim3.3$ from the MOSDEF survey. This analysis crucially utilizes different metallic ity calibrations at $zsim0$ and $z>1$ to account for evolving ISM conditions. We find significant correlations between O/H and stellar mass ($M_*$) at $zsim2.3$ and $zsim3.3$. The low-mass power law slope of the mass-metallicity relation is remarkably invariant over $z=0-3.3$, such that $textrm{O/H}propto M_*^{0.30}$ at all redshifts in this range. At fixed $M_*$, O/H decreases with increasing redshift as dlog(O/H)/d$z=-0.11pm0.02$. We find no evidence that the fundamental metallicity relation between $M_*$, O/H, and star-formation rate (SFR) evolves out to $zsim3.3$, with galaxies at $zsim2.3-3.3$ having O/H within 0.04~dex of local galaxies matched in $M_*$ and SFR on average. We employ analytic chemical evolution models to place constraints on the mass and metal loading factors of galactic outflows. The efficiency of metal removal increases toward lower $M_*$ at fixed redshift, and toward higher redshift at fixed $M_*$. These models suggest that the slope of the mass-metallicity relation is set by the scaling of the metal loading factor of outflows with $M_*$, not by the change in gas fraction as a function of $M_*$. The evolution toward lower O/H at fixed $M_*$ with increasing redshift is driven by both higher gas fraction (leading to stronger dilution of ISM metals) and higher metal removal efficiency, with models suggesting that both effects contribute approximately equally to the observed evolution. These results suggest that the processes governing the smooth baryonic growth of galaxies via gas flows and star formation hold in the same form over at least the past 12~Gyr.
We present the first measurements of the shape of the far-ultraviolet (far-UV; lambda=950-1500 A) dust attenuation curve at high redshift (z~3). Our analysis employs rest-frame UV spectra of 933 galaxies at z~3, 121 of which have very deep spectrosco pic observations (>7 hrs) at lambda=850-1300 A, with the Low Resolution Imaging Spectrograph on the Keck Telescope. By using an iterative approach in which we calculate the ratios of composite spectra in different bins of continuum color excess, E(B-V), we derive a dust curve that implies a lower attenuation in the far-UV for a given E(B-V) than those obtained with standard attenuation curves. We demonstrate that the UV composite spectra of z~3 galaxies can be modeled well by assuming our new attenuation curve, a high covering fraction of HI, and absorption from the Lyman-Werner bands of H2 with a small (<20%) covering fraction. The low covering fraction of H2 relative to that of the HI and dust suggests that most of the dust in the ISM of typical galaxies at z~3 is unrelated to the catalysis of H2, and is associated with other phases of the ISM (i.e., the ionized and neutral gas). The far-UV dust curve implies a factor of ~2 lower dust attenuation of Lyman continuum (ionizing) photons relative to those inferred from the most commonly assumed attenuation curves for L* galaxies at z~3. Our results may be utilized to assess the degree to which ionizing photons are attenuated in HII regions or, more generally, in the ionized or low column density (N(HI)<10^17.2 cm^-2) neutral ISM of high-redshift galaxies.
We analyze the rest-optical emission-line ratios of z~1.5 galaxies drawn from the MOSFIRE Deep Evolution Field (MOSDEF) survey. Using composite spectra we investigate the mass-metallicity relation (MZR) at z~1.5 and measure its evolution to z=0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z~1.5 to z=0 depends on stellar mass, evolving by $Deltarm log(rm O/H)sim0.25$ dex at $M_*<10^{9.75}M_{odot}$ down to $Deltarm log(rm O/H)sim0.05$ at $M_*>10^{10.5}M_{odot}$. In contrast, the O3N2-based MZR shows a constant offset of $Deltarm log(rm O/H)sim0.30$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z~1.5 sample. We investigated the secondary dependence of the MZR on SFR by measuring correlated scatter about the mean $M_*$-specific SFR and $M_*-log(rm O3N2)$ relations. We find an anti-correlation between $log(rm O/H)$ and sSFR offsets, indicating the presence of a $M_*$-SFR-Z relation, though with limited significance. Additionally, we find that our z~1.5 stacks lie along the z=0 metallicity sequence at fixed $mu=log(M_*/M_{odot})-0.6timeslog(rm SFR / M_{odot} yr^{-1})$ suggesting that the z~1.5 stacks can be described by the z=0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [NII]/H$alpha$ scales with galaxy properties is crucial to accurately describe the effects of blended [NII] and H$alpha$ on redshift and H$alpha$ flux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا