ﻻ يوجد ملخص باللغة العربية
We present a modification of the DFS graph search algorithm, suited for finding long induced paths. We use it to give simple proofs of the following results. We show that the induced size-Ramsey number of paths satisfies $hat{R}_{mathrm{ind}}(P_n)leq 5cdot 10^7n$, thus giving an explicit constant in the linear bound, improving the previous bound with a large constant from a regularity lemma argument by Haxell, Kohayakawa and {L}uczak. We also provide a bound for the $k$-color version, showing that $hat{R}_{mathrm{ind}}^k(P_n)=O(k^3log^4k)n$. Finally, we present a new short proof of the fact that the binomial random graph in the supercritical regime, $G(n,frac{1+varepsilon}{n})$, contains typically an induced path of length $Theta(varepsilon^2) n$.
It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on $t$ vertices, for fixed $t$. We propose an algorithm that, given a 3-colorable graph without an induce
For a graph $H$, a graph $G$ is $H$-induced-saturated if $G$ does not contain an induced copy of $H$, but either removing an edge from $G$ or adding a non-edge to $G$ creates an induced copy of $H$. Depending on the graph $H$, an $H$-induced-saturate
We generalize a result of Balister, Gy{H{o}}ri, Lehel and Schelp for hypergraphs. We determine the unique extremal structure of an $n$-vertex, $r$-uniform, connected, hypergraph with the maximum number of hyperedges, without a $k$-Berge-path, where $n geq N_{k,r}$, $kgeq 2r+13>17$.
Given a graph $G=(V,E)$ whose vertices have been properly coloured, we say that a path in $G$ is colourful if no two vertices in the path have the same colour. It is a corollary of the Gallai-Roy-Vitaver Theorem that every properly coloured graph con
The age $mathcal{A}(G)$ of a graph $G$ (undirected and without loops) is the collection of finite induced subgraphs of $G$, considered up to isomorphy and ordered by embeddability. It is well-quasi-ordered (wqo) for this order if it contains no infin