ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphs containing finite induced paths of unbounded length

180   0   0.0 ( 0 )
 نشر من قبل Imed Zaguia
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The age $mathcal{A}(G)$ of a graph $G$ (undirected and without loops) is the collection of finite induced subgraphs of $G$, considered up to isomorphy and ordered by embeddability. It is well-quasi-ordered (wqo) for this order if it contains no infinite antichain. A graph is emph{path-minimal} if it contains finite induced paths of unbounded length and every induced subgraph $G$ with this property embeds $G$. We construct $2^{aleph_0}$ path-minimal graphs whose ages are pairwise incomparable with set inclusion and which are wqo. Our construction is based on uniformly recurrent sequences and lexicographical sums of labelled graphs



قيم البحث

اقرأ أيضاً

We study the Decomposition Conjecture posed by Barat and Thomassen (2006), which states that for every tree $T$ there exists a natural number $k_T$ such that, if $G$ is a $k_T$-edge-connected graph and $|E(T)|$ divides $|E(G)|$, then $G$ admits a dec omposition into copies of $T$. In a series of papers, Thomassen verified this conjecture for stars, some bistars, paths of length $3$, and paths whose length is a power of $2$. We verify the Decomposition Conjecture for paths of length $5$.
In 2006, Barat and Thomassen posed the following conjecture: for each tree $T$, there exists a natural number $k_T$ such that, if $G$ is a $k_T$-edge-connected graph and $|E(G)|$ is divisible by $|E(T)|$, then $G$ admits a decomposition into copies o f $T$. This conjecture was verified for stars, some bistars, paths of length $3$, $5$, and $2^r$ for every positive integer $r$. We prove that this conjecture holds for paths of any fixed length.
It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on $t$ vertices, for fixed $t$. We propose an algorithm that, given a 3-colorable graph without an induce d path on $t$ vertices, computes a coloring with $max{5,2lceil{frac{t-1}{2}}rceil-2}$ many colors. If the input graph is triangle-free, we only need $max{4,lceil{frac{t-1}{2}}rceil+1}$ many colors. The running time of our algorithm is $O((3^{t-2}+t^2)m+n)$ if the input graph has $n$ vertices and $m$ edges.
Given a graph $G=(V,E)$ whose vertices have been properly coloured, we say that a path in $G$ is colourful if no two vertices in the path have the same colour. It is a corollary of the Gallai-Roy-Vitaver Theorem that every properly coloured graph con tains a colourful path on $chi(G)$ vertices. We explore a conjecture that states that every properly coloured triangle-free graph $G$ contains an induced colourful path on $chi(G)$ vertices and prove its correctness when the girth of $G$ is at least $chi(G)$. Recent work on this conjecture by Gyarfas and Sarkozy, and Scott and Seymour has shown the existence of a function $f$ such that if $chi(G)geq f(k)$, then an induced colourful path on $k$ vertices is guaranteed to exist in any properly coloured triangle-free graph $G$.
91 - Stefan Glock 2021
We show that for $dge d_0(epsilon)$, with high probability, the random graph $G(n,d/n)$ contains an induced path of length $(3/2-epsilon)frac{n}{d}log d$. This improves a result obtained independently by Luczak and Suen in the early 90s, and answers a question of Fernandez de la Vega. Along the way, we generalize a recent result of Cooley, Draganic, Kang and Sudakov who studied the analogous problem for induced matchings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا