ﻻ يوجد ملخص باللغة العربية
Given a graph $G=(V,E)$ whose vertices have been properly coloured, we say that a path in $G$ is colourful if no two vertices in the path have the same colour. It is a corollary of the Gallai-Roy-Vitaver Theorem that every properly coloured graph contains a colourful path on $chi(G)$ vertices. We explore a conjecture that states that every properly coloured triangle-free graph $G$ contains an induced colourful path on $chi(G)$ vertices and prove its correctness when the girth of $G$ is at least $chi(G)$. Recent work on this conjecture by Gyarfas and Sarkozy, and Scott and Seymour has shown the existence of a function $f$ such that if $chi(G)geq f(k)$, then an induced colourful path on $k$ vertices is guaranteed to exist in any properly coloured triangle-free graph $G$.
For all $nge 9$, we show that the only triangle-free graphs on $n$ vertices maximizing the number $5$-cycles are balanced blow-ups of a 5-cycle. This completely resolves a conjecture by ErdH{o}s, and extends results by Grzesik and Hatami, Hladky, Kr{
An orientation of a graph is semi-transitive if it is acyclic, and for any directed path $v_0rightarrow v_1rightarrow cdotsrightarrow v_k$ either there is no arc between $v_0$ and $v_k$, or $v_irightarrow v_j$ is an arc for all $0leq i<jleq k$. An un
We show that for $dge d_0(epsilon)$, with high probability, the random graph $G(n,d/n)$ contains an induced path of length $(3/2-epsilon)frac{n}{d}log d$. This improves a result obtained independently by Luczak and Suen in the early 90s, and answers
We prove an asymptotically tight lower bound on the average size of independent sets in a triangle-free graph on $n$ vertices with maximum degree $d$, showing that an independent set drawn uniformly at random from such a graph has expected size at le
Given a class $mathcal{C}$ of graphs and a fixed graph $H$, the online Ramsey game for $H$ on $mathcal C$ is a game between two players Builder and Painter as follows: an unbounded set of vertices is given as an initial state, and on each turn Builde