ﻻ يوجد ملخص باللغة العربية
The cyclically equivariant neural decoder was recently proposed in [Chen-Ye, International Conference on Machine Learning, 2021] to decode cyclic codes. In the same paper, a list decoding procedure was also introduced for two widely used classes of cyclic codes -- BCH codes and punctured Reed-Muller (RM) codes. While the list decoding procedure significantly improves the Frame Error Rate (FER) of the cyclically equivariant neural decoder, the Bit Error Rate (BER) of the list decoding procedure is even worse than the unique decoding algorithm when the list size is small. In this paper, we propose an improved version of the list decoding algorithm for BCH codes and punctured RM codes. Our new proposal significantly reduces the BER while maintaining the same (in some cases even smaller) FER. More specifically, our new decoder provides up to $2$dB gain over the previous list decoder when measured by BER, and the running time of our new decoder is $15%$ smaller. Code available at https://github.com/improvedlistdecoder/code
Neural decoders were introduced as a generalization of the classic Belief Propagation (BP) decoding algorithms, where the Trellis graph in the BP algorithm is viewed as a neural network, and the weights in the Trellis graph are optimized by training
Recently, it was shown that if multiplicative weights are assigned to the edges of a Tanner graph used in belief propagation decoding, it is possible to use deep learning techniques to find values for the weights which improve the error-correction pe
In this work, we propose extreme compression techniques like binarization, ternarization for Neural Decoders such as TurboAE. These methods reduce memory and computation by a factor of 64 with a performance better than the quantized (with 1-bit or 2-
We consider families of codes obtained by lifting a base code $mathcal{C}$ through operations such as $k$-XOR applied to local views of codewords of $mathcal{C}$, according to a suitable $k$-uniform hypergraph. The $k$-XOR operation yields the direct
This paper identifies convolutional codes (CCs) used in conjunction with a CC-specific cyclic redundancy check (CRC) code as a promising paradigm for short blocklength codes. The resulting CRC-CC concatenated code naturally permits the use of the ser