ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Offset Min-Sum Decoding

90   0   0.0 ( 0 )
 نشر من قبل Loren Lugosch
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, it was shown that if multiplicative weights are assigned to the edges of a Tanner graph used in belief propagation decoding, it is possible to use deep learning techniques to find values for the weights which improve the error-correction performance of the decoder. Unfortunately, this approach requires many multiplications, which are generally expensive operations. In this paper, we suggest a more hardware-friendly approach in which offset min-sum decoding is augmented with learnable offset parameters. Our method uses no multiplications and has a parameter count less than half that of the multiplicative algorithm. This both speeds up training and provides a feasible path to hardware architectures. After describing our method, we compare the performance of the two neural decoding algorithms and show that our method achieves error-correction performance within 0.1 dB of the multiplicative approach and as much as 1 dB better than traditional belief propagation for the codes under consideration.



قيم البحث

اقرأ أيضاً

Non-binary low-density parity-check codes are robust to various channel impairments. However, based on the existing decoding algorithms, the decoder implementations are expensive because of their excessive computational complexity and memory usage. B ased on the combinatorial optimization, we present an approximation method for the check node processing. The simulation results demonstrate that our scheme has small performance loss over the additive white Gaussian noise channel and independent Rayleigh fading channel. Furthermore, the proposed reduced-complexity realization provides significant savings on hardware, so it yields a good performance-complexity tradeoff and can be efficiently implemented.
We establish the convergence of the min-sum message passing algorithm for minimization of a broad class of quadratic objective functions: those that admit a convex decomposition. Our results also apply to the equivalent problem of the convergence of Gaussian belief propagation.
89 - Xiangyu Chen , Min Ye 2021
The cyclically equivariant neural decoder was recently proposed in [Chen-Ye, International Conference on Machine Learning, 2021] to decode cyclic codes. In the same paper, a list decoding procedure was also introduced for two widely used classes of c yclic codes -- BCH codes and punctured Reed-Muller (RM) codes. While the list decoding procedure significantly improves the Frame Error Rate (FER) of the cyclically equivariant neural decoder, the Bit Error Rate (BER) of the list decoding procedure is even worse than the unique decoding algorithm when the list size is small. In this paper, we propose an improved version of the list decoding algorithm for BCH codes and punctured RM codes. Our new proposal significantly reduces the BER while maintaining the same (in some cases even smaller) FER. More specifically, our new decoder provides up to $2$dB gain over the previous list decoder when measured by BER, and the running time of our new decoder is $15%$ smaller. Code available at https://github.com/improvedlistdecoder/code
We speed up existing decoding algorithms for three code classes in different metrics: interleaved Gabidulin codes in the rank metric, lifted interleaved Gabidulin codes in the subspace metric, and linearized Reed-Solomon codes in the sum-rank metric. The speed-ups are achieved by new algorithms that reduce the cores of the underlying computational problems of the decoders to one common tool: computing left and right approximant bases of matrices over skew polynomial rings. To accomplish this, we describe a skew-analogue of the existing PM-Basis algorithm for matrices over ordinary polynomials. This captures the bulk of the work in multiplication of skew polynomials, and the complexity benefit comes from existing algorithms performing this faster than in classical quadratic complexity. The new algorithms for the various decoding-related computational problems are interesting in their own and have further applications, in particular parts of decoders of several other codes and foundational problems related to the remainder-evaluation of skew polynomials.
High quality data is essential in deep learning to train a robust model. While in other fields data is sparse and costly to collect, in error decoding it is free to query and label thus allowing potential data exploitation. Utilizing this fact and in spired by active learning, two novel methods are introduced to improve Weighted Belief Propagation (WBP) decoding. These methods incorporate machine-learning concepts with error decoding measures. For BCH(63,36), (63,45) and (127,64) codes, with cycle-reduced parity-check matrices, improvement of up to 0.4dB at the waterfall region, and of up to 1.5dB at the errorfloor region in FER, over the original WBP, is demonstrated by smartly sampling the data, without increasing inference (decoding) complexity. The proposed methods constitutes an example guidelines for model enhancement by incorporation of domain knowledge from error-correcting field into a deep learning model. These guidelines can be adapted to any other deep learning based communication block.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا