ﻻ يوجد ملخص باللغة العربية
We consider families of codes obtained by lifting a base code $mathcal{C}$ through operations such as $k$-XOR applied to local views of codewords of $mathcal{C}$, according to a suitable $k$-uniform hypergraph. The $k$-XOR operation yields the direct sum encoding used in works of [Ta-Shma, STOC 2017] and [Dinur and Kaufman, FOCS 2017]. We give a general framework for list decoding such lifted codes, as long as the base code admits a unique decoding algorithm, and the hypergraph used for lifting satisfies certain expansion properties. We show that these properties are satisfied by the collection of length $k$ walks on an expander graph, and by hypergraphs corresponding to high-dimensional expanders. Instantiating our framework, we obtain list decoding algorithms for direct sum liftings on the above hypergraph families. Using known connections between direct sum and direct product, we also recover the recent results of Dinur et al. [SODA 2019] on list decoding for direct product liftings. Our framework relies on relaxations given by the Sum-of-Squares (SOS) SDP hierarchy for solving various constraint satisfaction problems (CSPs). We view the problem of recovering the closest codeword to a given word, as finding the optimal solution of a CSP. Constraints in the instance correspond to edges of the lifting hypergraph, and the solutions are restricted to lie in the base code $mathcal{C}$. We show that recent algorithms for (approximately) solving CSPs on certain expanding hypergraphs also yield a decoding algorithm for such lifted codes. We extend the framework to list decoding, by requiring the SOS solution to minimize a convex proxy for negative entropy. We show that this ensures a covering property for the SOS solution, and the condition and round approach used in several SOS algorithms can then be used to recover the required list of codewords.
The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance $1/2 -epsilon$ and rate $Omega(epsilon^2)$ (where an upper bound of $O(epsilon^2log(1/epsilon))$ is known). Ta-Shma [STOC 2017] gave an explicit co
Power decoding is a partial decoding paradigm for arbitrary algebraic geometry codes for decoding beyond half the minimum distance, which usually returns the unique closest codeword, but in rare cases fails to return anything. The original version de
As the first error correction codes provably achieving the symmetric capacity of binary-input discrete memory-less channels (B-DMCs), polar codes have been recently chosen by 3GPP for eMBB control channel. Among existing algorithms, CRC-aided success
This article discusses the decoding of Gabidulin codes and shows how to extend the usual decoder to any supercode of a Gabidulin code at the cost of a significant decrease of the decoding radius. Using this decoder, we provide polynomial time attacks
Turbo codes and CRC codes are usually decoded separately according to the serially concatenated inner codes and outer codes respectively. In this letter, we propose a hybrid decoding algorithm of turbo-CRC codes, where the outer codes, CRC codes, are