ﻻ يوجد ملخص باللغة العربية
How to effectively incorporate cross-utterance information cues into a neural language model (LM) has emerged as one of the intriguing issues for automatic speech recognition (ASR). Existing research efforts on improving contextualization of an LM typically regard previous utterances as a sequence of additional input and may fail to capture complex global structural dependencies among these utterances. In view of this, we in this paper seek to represent the historical context information of an utterance as graph-structured data so as to distill cross-utterances, global word interaction relationships. To this end, we apply a graph convolutional network (GCN) on the resulting graph to obtain the corresponding GCN embeddings of historical words. GCN has recently found its versatile applications on social-network analysis, text summarization, and among others due mainly to its ability of effectively capturing rich relational information among elements. However, GCN remains largely underexplored in the context of ASR, especially for dealing with conversational speech. In addition, we frame ASR N-best reranking as a prediction problem, leveraging bidirectional encoder representations from transformers (BERT) as the vehicle to not only seize the local intrinsic word regularity patterns inherent in a candidate hypothesis but also incorporate the cross-utterance, historical word interaction cues distilled by GCN for promoting performance. Extensive experiments conducted on the AMI benchmark dataset seem to confirm the pragmatic utility of our methods, in relation to some current top-of-the-line methods.
Language models (LMs) pre-trained on massive amounts of text, in particular bidirectional encoder representations from Transformers (BERT), generative pre-training (GPT), and GPT-2, have become a key technology for many natural language processing ta
Attention-based encoder-decoder (AED) models have achieved promising performance in speech recognition. However, because the decoder predicts text tokens (such as characters or words) in an autoregressive manner, it is difficult for an AED model to p
Despite prosody is related to the linguistic information up to the discourse structure, most text-to-speech (TTS) systems only take into account that within each sentence, which makes it challenging when converting a paragraph of texts into natural a
Convolutional Neural Networks (CNNs) are effective models for reducing spectral variations and modeling spectral correlations in acoustic features for automatic speech recognition (ASR). Hybrid speech recognition systems incorporating CNNs with Hidde
We live in a world where 60% of the population can speak two or more languages fluently. Members of these communities constantly switch between languages when having a conversation. As automatic speech recognition (ASR) systems are being deployed to