ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks

472   0   0.0 ( 0 )
 نشر من قبل Mohammad Pezeshki
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional Neural Networks (CNNs) are effective models for reducing spectral variations and modeling spectral correlations in acoustic features for automatic speech recognition (ASR). Hybrid speech recognition systems incorporating CNNs with Hidden Markov Models/Gaussian Mixture Models (HMMs/GMMs) have achieved the state-of-the-art in various benchmarks. Meanwhile, Connectionist Temporal Classification (CTC) with Recurrent Neural Networks (RNNs), which is proposed for labeling unsegmented sequences, makes it feasible to train an end-to-end speech recognition system instead of hybrid settings. However, RNNs are computationally expensive and sometimes difficult to train. In this paper, inspired by the advantages of both CNNs and the CTC approach, we propose an end-to-end speech framework for sequence labeling, by combining hierarchical CNNs with CTC directly without recurrent connections. By evaluating the approach on the TIMIT phoneme recognition task, we show that the proposed model is not only computationally efficient, but also competitive with the existing baseline systems. Moreover, we argue that CNNs have the capability to model temporal correlations with appropriate context information.



قيم البحث

اقرأ أيضاً

Recently, the connectionist temporal classification (CTC) model coupled with recurrent (RNN) or convolutional neural networks (CNN), made it easier to train speech recognition systems in an end-to-end fashion. However in real-valued models, time fram e components such as mel-filter-bank energies and the cepstral coefficients obtained from them, together with their first and second order derivatives, are processed as individual elements, while a natural alternative is to process such components as composed entities. We propose to group such elements in the form of quaternions and to process these quaternions using the established quaternion algebra. Quaternion numbers and quaternion neural networks have shown their efficiency to process multidimensional inputs as entities, to encode internal dependencies, and to solve many tasks with less learning parameters than real-valued models. This paper proposes to integrate multiple feature views in quaternion-valued convolutional neural network (QCNN), to be used for sequence-to-sequence mapping with the CTC model. Promising results are reported using simple QCNNs in phoneme recognition experiments with the TIMIT corpus. More precisely, QCNNs obtain a lower phoneme error rate (PER) with less learning parameters than a competing model based on real-valued CNNs.
We present a state-of-the-art speech recognition system developed using end-to-end deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, our system does not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learns a function that is robust to such effects. We do not need a phoneme dictionary, nor even the concept of a phoneme. Key to our approach is a well-optimized RNN training system that uses multiple GPUs, as well as a set of novel data synthesis techniques that allow us to efficiently obtain a large amount of varied data for training. Our system, called Deep Speech, outperforms previously published results on the widely studied Switchboard Hub500, achieving 16.0% error on the full test set. Deep Speech also handles challenging noisy environments better than widely used, state-of-the-art commercial speech systems.
Recently, end-to-end sequence-to-sequence models for speech recognition have gained significant interest in the research community. While previous architecture choices revolve around time-delay neural networks (TDNN) and long short-term memory (LSTM) recurrent neural networks, we propose to use self-attention via the Transformer architecture as an alternative. Our analysis shows that deep Transformer networks with high learning capacity are able to exceed performance from previous end-to-end approaches and even match the conventional hybrid systems. Moreover, we trained very deep models with up to 48 Transformer layers for both encoder and decoders combined with stochastic residual connections, which greatly improve generalizability and training efficiency. The resulting models outperform all previous end-to-end ASR approaches on the Switchboard benchmark. An ensemble of these models achieve 9.9% and 17.7% WER on Switchboard and CallHome test sets respectively. This finding brings our end-to-end models to competitive levels with previous hybrid systems. Further, with model ensembling the Transformers can outperform certain hybrid systems, which are more complicated in terms of both structure and training procedure.
Voice-controlled house-hold devices, like Amazon Echo or Google Home, face the problem of performing speech recognition of device-directed speech in the presence of interfering background speech, i.e., background noise and interfering speech from ano ther person or media device in proximity need to be ignored. We propose two end-to-end models to tackle this problem with information extracted from the anchored segment. The anchored segment refers to the wake-up word part of an audio stream, which contains valuable speaker information that can be used to suppress interfering speech and background noise. The first method is called Multi-source Attention where the attention mechanism takes both the speaker information and decoder state into consideration. The second method directly learns a frame-level mask on top of the encoder output. We also explore a multi-task learning setup where we use the ground truth of the mask to guide the learner. Given that audio data with interfering speech is rare in our training data set, we also propose a way to synthesize noisy speech from clean speech to mitigate the mismatch between training and test data. Our proposed methods show up to 15% relative reduction in WER for Amazon Alexa live data with interfering background speech without significantly degrading on clean speech.
Building speech recognizers in multiple languages typically involves replicating a monolingual training recipe for each language, or utilizing a multi-task learning approach where models for different languages have separate output labels but share s ome internal parameters. In this work, we exploit recent progress in end-to-end speech recognition to create a single multilingual speech recognition system capable of recognizing any of the languages seen in training. To do so, we propose the use of a universal character set that is shared among all languages. We also create a language-specific gating mechanism within the network that can modulate the networks internal representations in a language-specific way. We evaluate our proposed approach on the Microsoft Cortana task across three languages and show that our system outperforms both the individual monolingual systems and systems built with a multi-task learning approach. We also show that this model can be used to initialize a monolingual speech recognizer, and can be used to create a bilingual model for use in code-switching scenarios.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا