ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Prosody Modelling with Cross-Utterance BERT Embeddings for End-to-end Speech Synthesis

139   0   0.0 ( 0 )
 نشر من قبل Guanghui Xu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite prosody is related to the linguistic information up to the discourse structure, most text-to-speech (TTS) systems only take into account that within each sentence, which makes it challenging when converting a paragraph of texts into natural and expressive speech. In this paper, we propose to use the text embeddings of the neighboring sentences to improve the prosody generation for each utterance of a paragraph in an end-to-end fashion without using any explicit prosody features. More specifically, cross-utterance (CU) context vectors, which are produced by an additional CU encoder based on the sentence embeddings extracted by a pre-trained BERT model, are used to augment the input of the Tacotron2 decoder. Two types of BERT embeddings are investigated, which leads to the use of different CU encoder structures. Experimental results on a Mandarin audiobook dataset and the LJ-Speech English audiobook dataset demonstrate the use of CU information can improve the naturalness and expressiveness of the synthesized speech. Subjective listening testing shows most of the participants prefer the voice generated using the CU encoder over that generated using standard Tacotron2. It is also found that the prosody can be controlled indirectly by changing the neighbouring sentences.



قيم البحث

اقرأ أيضاً

We present an extension to the Tacotron speech synthesis architecture that learns a latent embedding space of prosody, derived from a reference acoustic representation containing the desired prosody. We show that conditioning Tacotron on this learned embedding space results in synthesized audio that matches the prosody of the reference signal with fine time detail even when the reference and synthesis speakers are different. Additionally, we show that a reference prosody embedding can be used to synthesize text that is different from that of the reference utterance. We define several quantitative and subjective metrics for evaluating prosody transfer, and report results with accompanying audio samples from single-speaker and 44-speaker Tacotron models on a prosody transfer task.
In this paper, we present an end-to-end training framework for building state-of-the-art end-to-end speech recognition systems. Our training system utilizes a cluster of Central Processing Units(CPUs) and Graphics Processing Units (GPUs). The entire data reading, large scale data augmentation, neural network parameter updates are all performed on-the-fly. We use vocal tract length perturbation [1] and an acoustic simulator [2] for data augmentation. The processed features and labels are sent to the GPU cluster. The Horovod allreduce approach is employed to train neural network parameters. We evaluated the effectiveness of our system on the standard Librispeech corpus [3] and the 10,000-hr anonymized Bixby English dataset. Our end-to-end speech recognition system built using this training infrastructure showed a 2.44 % WER on test-clean of the LibriSpeech test set after applying shallow fusion with a Transformer language model (LM). For the proprietary English Bixby open domain test set, we obtained a WER of 7.92 % using a Bidirectional Full Attention (BFA) end-to-end model after applying shallow fusion with an RNN-LM. When the monotonic chunckwise attention (MoCha) based approach is employed for streaming speech recognition, we obtained a WER of 9.95 % on the same Bixby open domain test set.
In this work, we extend ClariNet (Ping et al., 2019), a fully end-to-end speech synthesis model (i.e., text-to-wave), to generate high-fidelity speech from multiple speakers. To model the unique characteristic of different voices, low dimensional tra inable speaker embeddings are shared across each component of ClariNet and trained together with the rest of the model. We demonstrate that the multi-speaker ClariNet outperforms state-of-the-art systems in terms of naturalness, because the whole model is jointly optimized in an end-to-end manner.
Synthesized speech from articulatory movements can have real-world use for patients with vocal cord disorders, situations requiring silent speech, or in high-noise environments. In this work, we present EMA2S, an end-to-end multimodal articulatory-to -speech system that directly converts articulatory movements to speech signals. We use a neural-network-based vocoder combined with multimodal joint-training, incorporating spectrogram, mel-spectrogram, and deep features. The experimental results confirm that the multimodal approach of EMA2S outperforms the baseline system in terms of both objective evaluation and subjective evaluation metrics. Moreover, results demonstrate that joint mel-spectrogram and deep feature loss training can effectively improve system performance.
In this work, we learn a shared encoding representation for a multi-task neural network model optimized with connectionist temporal classification (CTC) and conventional framewise cross-entropy training criteria. Our experiments show that the multi-t ask training not only tackles the complexity of optimizing CTC models such as acoustic-to-word but also results in significant improvement compared to the plain-task training with an optimal setup. Furthermore, we propose to use the encoding representation learned by the multi-task network to initialize the encoder of attention-based models. Thereby, we train a deep attention-based end-to-end model with 10 long short-term memory (LSTM) layers of encoder which produces 12.2% and 22.6% word-error-rate on Switchboard and CallHome subsets of the Hub5 2000 evaluation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا