ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-supervised Active Regression

423   0   0.0 ( 0 )
 نشر من قبل Fnu Devvrit
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Labelled data often comes at a high cost as it may require recruiting human labelers or running costly experiments. At the same time, in many practical scenarios, one already has access to a partially labelled, potentially biased dataset that can help with the learning task at hand. Motivated by such settings, we formally initiate a study of $semi-supervised$ $active$ $learning$ through the frame of linear regression. In this setting, the learner has access to a dataset $X in mathbb{R}^{(n_1+n_2) times d}$ which is composed of $n_1$ unlabelled examples that an algorithm can actively query, and $n_2$ examples labelled a-priori. Concretely, denoting the true labels by $Y in mathbb{R}^{n_1 + n_2}$, the learners objective is to find $widehat{beta} in mathbb{R}^d$ such that, begin{equation} | X widehat{beta} - Y |_2^2 le (1 + epsilon) min_{beta in mathbb{R}^d} | X beta - Y |_2^2 end{equation} while making as few additional label queries as possible. In order to bound the label queries, we introduce an instance dependent parameter called the reduced rank, denoted by $R_X$, and propose an efficient algorithm with query complexity $O(R_X/epsilon)$. This result directly implies improved upper bounds for two important special cases: (i) active ridge regression, and (ii) active kernel ridge regression, where the reduced-rank equates to the statistical dimension, $sd_lambda$ and effective dimension, $d_lambda$ of the problem respectively, where $lambda ge 0$ denotes the regularization parameter. For active ridge regression we also prove a matching lower bound of $O(sd_lambda / epsilon)$ on the query complexity of any algorithm. This subsumes prior work that only considered the unregularized case, i.e., $lambda = 0$.



قيم البحث

اقرأ أيضاً

Twin neural network regression (TNNR) is a semi-supervised regression algorithm, it can be trained on unlabelled data points as long as other, labelled anchor data points, are present. TNNR is trained to predict differences between the target values of two different data points rather than the targets themselves. By ensembling predicted differences between the targets of an unseen data point and all training data points, it is possible to obtain a very accurate prediction for the original regression problem. Since any loop of predicted differences should sum to zero, loops can be supplied to the training data, even if the data points themselves within loops are unlabelled. Semi-supervised training improves TNNR performance, which is already state of the art, significantly.
Ordinal regression is aimed at predicting an ordinal class label. In this paper, we consider its semi-supervised formulation, in which we have unlabeled data along with ordinal-labeled data to train an ordinal regressor. There are several metrics to evaluate the performance of ordinal regression, such as the mean absolute error, mean zero-one error, and mean squared error. However, the existing studies do not take the evaluation metric into account, have a restriction on the model choice, and have no theoretical guarantee. To overcome these problems, we propose a novel generic framework for semi-supervised ordinal regression based on the empirical risk minimization principle that is applicable to optimizing all of the metrics mentioned above. Besides, our framework has flexible choices of models, surrogate losses, and optimization algorithms without the common geometric assumption on unlabeled data such as the cluster assumption or manifold assumption. We further provide an estimation error bound to show that our risk estimator is consistent. Finally, we conduct experiments to show the usefulness of our framework.
Active learning is an effective technique for reducing the labeling cost by improving data efficiency. In this work, we propose a novel batch acquisition strategy for active learning in the setting where the model training is performed in a semi-supe rvised manner. We formulate our approach as a data summarization problem via bilevel optimization, where the queried batch consists of the points that best summarize the unlabeled data pool. We show that our method is highly effective in keyword detection tasks in the regime when only few labeled samples are available.
Active learning (AL) combines data labeling and model training to minimize the labeling cost by prioritizing the selection of high value data that can best improve model performance. In pool-based active learning, accessible unlabeled data are not us ed for model training in most conventional methods. Here, we propose to unify unlabeled sample selection and model training towards minimizing labeling cost, and make two contributions towards that end. First, we exploit both labeled and unlabeled data using semi-supervised learning (SSL) to distill information from unlabeled data during the training stage. Second, we propose a consistency-based sample selection metric that is coherent with the training objective such that the selected samples are effective at improving model performance. We conduct extensive experiments on image classification tasks. The experimental results on CIFAR-10, CIFAR-100 and ImageNet demonstrate the superior performance of our proposed method with limited labeled data, compared to the existing methods and the alternative AL and SSL combinations. Additionally, we study an important yet under-explored problem -- When can we start learning-based AL selection?. We propose a measure that is empirically correlated with the AL target loss and is potentially useful for determining the proper starting point of learning-based AL methods.
Active learning is widely used to reduce labeling effort and training time by repeatedly querying only the most beneficial samples from unlabeled data. In real-world problems where data cannot be stored indefinitely due to limited storage or privacy issues, the query selection and the model update should be performed as soon as a new data sample is observed. Various online active learning methods have been studied to deal with these challenges; however, there are difficulties in selecting representative query samples and updating the model efficiently without forgetting. In this study, we propose Message Passing Adaptive Resonance Theory (MPART) that learns the distribution and topology of input data online. Through message passing on the topological graph, MPART actively queries informative and representative samples, and continuously improves the classification performance using both labeled and unlabeled data. We evaluate our model in stream-based selective sampling scenarios with comparable query selection strategies, showing that MPART significantly outperforms competitive models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا