ﻻ يوجد ملخص باللغة العربية
Ordinal regression is aimed at predicting an ordinal class label. In this paper, we consider its semi-supervised formulation, in which we have unlabeled data along with ordinal-labeled data to train an ordinal regressor. There are several metrics to evaluate the performance of ordinal regression, such as the mean absolute error, mean zero-one error, and mean squared error. However, the existing studies do not take the evaluation metric into account, have a restriction on the model choice, and have no theoretical guarantee. To overcome these problems, we propose a novel generic framework for semi-supervised ordinal regression based on the empirical risk minimization principle that is applicable to optimizing all of the metrics mentioned above. Besides, our framework has flexible choices of models, surrogate losses, and optimization algorithms without the common geometric assumption on unlabeled data such as the cluster assumption or manifold assumption. We further provide an estimation error bound to show that our risk estimator is consistent. Finally, we conduct experiments to show the usefulness of our framework.
Large deep neural networks are powerful, but exhibit undesirable behaviors such as memorization and sensitivity to adversarial examples. In this work, we propose mixup, a simple learning principle to alleviate these issues. In essence, mixup trains a
Recently, invariant risk minimization (IRM) was proposed as a promising solution to address out-of-distribution (OOD) generalization. However, it is unclear when IRM should be preferred over the widely-employed empirical risk minimization (ERM) frame
Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of c
Pairwise similarities and dissimilarities between data points might be easier to obtain than fully labeled data in real-world classification problems, e.g., in privacy-aware situations. To handle such pairwise information, an empirical risk minimizat
We propose self-adaptive training---a new training algorithm that dynamically corrects problematic training labels by model predictions without incurring extra computational cost---to improve generalization of deep learning for potentially corrupted