ﻻ يوجد ملخص باللغة العربية
Active learning is widely used to reduce labeling effort and training time by repeatedly querying only the most beneficial samples from unlabeled data. In real-world problems where data cannot be stored indefinitely due to limited storage or privacy issues, the query selection and the model update should be performed as soon as a new data sample is observed. Various online active learning methods have been studied to deal with these challenges; however, there are difficulties in selecting representative query samples and updating the model efficiently without forgetting. In this study, we propose Message Passing Adaptive Resonance Theory (MPART) that learns the distribution and topology of input data online. Through message passing on the topological graph, MPART actively queries informative and representative samples, and continuously improves the classification performance using both labeled and unlabeled data. We evaluate our model in stream-based selective sampling scenarios with comparable query selection strategies, showing that MPART significantly outperforms competitive models.
Graph neural networks (GNNs) are a powerful inductive bias for modelling algorithmic reasoning procedures and data structures. Their prowess was mainly demonstrated on tasks featuring Markovian dynamics, where querying any associated data structure d
Graph convolution networks, like message passing graph convolution networks (MPGCNs), have been a powerful tool in representation learning of networked data. However, when data is heterogeneous, most architectures are limited as they employ a single
Constructing appropriate representations of molecules lies at the core of numerous tasks such as material science, chemistry and drug designs. Recent researches abstract molecules as attributed graphs and employ graph neural networks (GNN) for molecu
We formulate a new problem at the intersectionof semi-supervised learning and contextual bandits,motivated by several applications including clini-cal trials and ad recommendations. We demonstratehow Graph Convolutional Network (GCN), a semi-supervis
In offline reinforcement learning (RL) agents are trained using a logged dataset. It appears to be the most natural route to attack real-life applications because in domains such as healthcare and robotics interactions with the environment are either