ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing charge dynamics in diamond with an individual color center

130   0   0.0 ( 0 )
 نشر من قبل Shimon Kolkowitz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Control over the charge states of color centers in solids is necessary in order to fully utilize them in quantum technologies. However, the microscopic charge dynamics of deep defects in wide-bandgap semiconductors are complex, and much remains unknown. Here, we utilize single shot charge state readout of an individual nitrogen-vacancy (NV) center to probe charge dynamics of the surrounding defects in diamond. We show that the NV center charge state can be converted through the capture of holes produced by optical illumination of defects many microns away. With this method, we study the optical charge conversion of silicon-vacancy (SiV) centers and provide evidence that the dark state of the SiV center under optical illumination is SiV2-. These measurements illustrate that charge carrier generation, transport, and capture are important considerations in the design and implementation of quantum devices with color centers, and provide a novel way to probe and control charge dynamics in diamond.



قيم البحث

اقرأ أيضاً

Understanding the dynamics of molecules adsorbed to surfaces or confined to small volumes is a matter of increasing scientific and technological importance. Here, we demonstrate a pulse protocol using individual paramagnetic nitrogen vacancy (NV) cen ters in diamond to observe the time evolution of 1H spins from organic molecules located a few nanometers from the diamond surface. The protocol records temporal correlations among the interacting 1H spins, and thus is sensitive to the local system dynamics via its impact on the nuclear spin relaxation and interaction with the NV. We are able to gather information on the nanoscale rotational and translational diffusion dynamics by carefully analyzing the time dependence of the NMR signal. Applying this technique to various liquid and solid samples, we find evidence that liquid samples form a semi-solid layer of 1.5 nm thickness on the surface of diamond, where translational diffusion is suppressed while rotational diffusion remains present. Extensions of the present technique could be adapted to highlight the chemical composition of molecules tethered to the diamond surface or to investigate thermally or chemically activated dynamical processes such as molecular folding.
Single charge detection with nanoscale spatial resolution in ambient conditions is a current frontier in metrology that has diverse interdisciplinary applications. Here, such single charge detection is demonstrated using two nitrogen-vacancy (NV) cen ters in diamond. One NV center is employed as a sensitive electrometer to detect the change in electric field created by the displacement of a single electron resulting from the optical switching of the other NV center between its neutral (NV$^0$) and negative (NV$^-$) charge states. As a consequence, our measurements also provide direct insight into the charge dynamics inside the material.
The electrical conductivity of a material can feature subtle, nontrivial, and spatially-varying signatures with critical insight into the materials underlying physics. Here we demonstrate a conductivity imaging technique based on the atom-sized nitro gen-vacancy (NV) defect in diamond that offers local, quantitative, and noninvasive conductivity imaging with nanoscale spatial resolution. We monitor the spin relaxation rate of a single NV center in a scanning probe geometry to quantitatively image the magnetic fluctuations produced by thermal electron motion in nanopatterned metallic conductors. We achieve 40-nm scale spatial resolution of the conductivity and realize a 25-fold increase in imaging speed by implementing spin-to-charge conversion readout of a shallow NV center. NV-based conductivity imaging can probe condensed-matter systems in a new regime, and as a model example, we project readily achievable imaging of nanoscale phase separation in complex oxides.
A magneto-optical study of the 1.4 eV Ni color center in boron-free synthetic diamond, grown at high pressure and high temperature, has been performed in magnetic fields up to 56 T. The data is interpreted using the effective spin Hamiltonian of Naza re, Nevers and Davies [Phys. Rev. B 43, 14196 (1991)] for interstitial Ni$^{+}$ with the electronic configuration $3d^{9}$ and effective spin $S=1/2$. Our results unequivocally demonstrate the trigonal symmetry of the defect which preferentially aligns along the [111] growth direction on the (111) face, but reveal the shortcomings of the crystal field model for this particular defect.
We study spin relaxation and diffusion in an electron-spin ensemble of nitrogen impurities in diamond at low temperature (0.25-1.2 K) and polarizing magnetic field (80-300 mT). Measurements exploit mode- and temperature-dependent coupling of hyperfin e-split sub-ensembles to the resonator. Temperature-independent spin linewidth and relaxation time suggest that spin diffusion limits spin relaxation. Depolarization of one sub-ensemble by resonant pumping of another indicates fast cross-relaxation compared to spin diffusion, with implications on use of sub-ensembles as independent quantum memories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا