ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing dynamics of an electron-spin ensemble via a superconducting resonator

239   0   0.0 ( 0 )
 نشر من قبل Vishal Ranjan
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study spin relaxation and diffusion in an electron-spin ensemble of nitrogen impurities in diamond at low temperature (0.25-1.2 K) and polarizing magnetic field (80-300 mT). Measurements exploit mode- and temperature-dependent coupling of hyperfine-split sub-ensembles to the resonator. Temperature-independent spin linewidth and relaxation time suggest that spin diffusion limits spin relaxation. Depolarization of one sub-ensemble by resonant pumping of another indicates fast cross-relaxation compared to spin diffusion, with implications on use of sub-ensembles as independent quantum memories.



قيم البحث

اقرأ أيضاً

Yttrium orthosilicate (Y$_2$SiO$_5$, or YSO) has proved to be a convenient host for rare-earth ions used in demonstrations of microwave quantum memories and optical memories with microwave interfaces, and shows promise for coherent microwave--optical conversion owing to its favourable optical and spin properties. The strong coupling required by such microwave applications could be achieved using superconducting resonators patterned directly on Y$_2$SiO$_5$, and hence we investigate here the use of Y$_2$SiO$_5$ as an alternative to sapphire or silicon substrates for superconducting hybrid device fabrication. A NbN resonator with frequency 6.008 GHz and low power quality factor $Q approx 400000$ was fabricated on a Y$_2$SiO$_5$ substrate doped with isotopically enriched Nd$^{145}$. Measurements of dielectric loss yield a loss-tangent $tandelta = 4 times 10^{-6}$, comparable to sapphire. Electron spin resonance (ESR) measurements performed using the resonator show the characteristic angular dependence expected from the anisotropic Nd$^{145}$ spin, and the coupling strength between resonator and electron spins is in the high cooperativity regime ($C = 30$). These results demonstrate Y$_2$SiO$_5$ as an excellent substrate for low-loss, high-Q microwave resonators, especially in applications for coupling to optically-accessible rare earth spins.
Interfacing superconducting quantum processors, working in the GHz frequency range, with optical quantum networks and atomic qubits is a challenging task for the implementation of distributed quantum information processing as well as for quantum comm unication. Using spin ensembles of rare earth ions provide an excellent opportunity to bridge microwave and optical domains at the quantum level. In this letter, we demonstrate magnetic coupling of Er$^{3+}$ spins doped in Y$_{2}$SiO$_{5}$ crystal to a high-Q coplanar superconducting resonator.
The problem of coupling multiple spin ensembles through cavity photons is revisited by using PyBTM organic radicals and a high-$T_c$ superconducting coplanar resonator. An exceptionally strong coupling is obtained and up to three spin ensembles are s imultaneously coupled. The ensembles are made physically distinguishable by chemically varying the $g$ factor and by exploiting the inhomogeneities of the applied magnetic field. The coherent mixing of the spin and field modes is demonstrated by the observed multiple anticrossing, along with the simulations performed within the input-output formalism, and quantified by suitable entropic measures.
We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single electron transistor (SSET) in the vicinity of the Josephson quasiparticle (JQP) and double Josephson quasiparticle (DJQP) resonances. For weak co upling and wide separation of dynamical timescales, we find that for either superconducting resonance the dynamics of the resonator is given by a Fokker-Planck equation, i.e., the SSET behaves effectively as an equilibrium heat bath, characterised by an effective temperature, which also damps the resonator and renormalizes its frequency. Depending on the gate and drain-source voltage bias points with respect to the superconducting resonance, the SSET can also give rise to an instability in the mechanical resonator marked by negative damping and temperature within the appropriate Fokker-Planck equation. Furthermore, sufficiently close to a resonance, we find that the Fokker-Planck description breaks down. We also point out that there is a close analogy between coupling a nanomechanical resonator to a SSET in the vicinity of the JQP resonance and Doppler cooling of atoms by means of lasers.
133 - Ge Yang , A. Fragner , G. Koolstra 2015
The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics (cQED) allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts that are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be >1 MHz per electron, indicating the feasibility of achieving single electron strong coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا