ﻻ يوجد ملخص باللغة العربية
A magneto-optical study of the 1.4 eV Ni color center in boron-free synthetic diamond, grown at high pressure and high temperature, has been performed in magnetic fields up to 56 T. The data is interpreted using the effective spin Hamiltonian of Nazare, Nevers and Davies [Phys. Rev. B 43, 14196 (1991)] for interstitial Ni$^{+}$ with the electronic configuration $3d^{9}$ and effective spin $S=1/2$. Our results unequivocally demonstrate the trigonal symmetry of the defect which preferentially aligns along the [111] growth direction on the (111) face, but reveal the shortcomings of the crystal field model for this particular defect.
Control over the charge states of color centers in solids is necessary in order to fully utilize them in quantum technologies. However, the microscopic charge dynamics of deep defects in wide-bandgap semiconductors are complex, and much remains unkno
Scalable quantum photonic networks require coherent excitation of quantum emitters. However, many solid-state systems can undergo a transition to a dark shelving state that inhibits the fluorescence. Here we demonstrate that a controlled gating using
Optically-detected paramagnetic centers in wide-bandgap semiconductors are emerging as a promising platform for nanoscale metrology at room temperature. Of particular interest are applications where the center is used as a probe to interrogate other
The nitrogen-vacancy (NV) center in diamond is a widely-utilized system due to its useful quantum properties. Almost all research focuses on the negative charge state (NV$^-$) and comparatively little is understood about the neutral charge state (NV$
Nitrogen-vacancy (NV) centers in diamond have attracted significant interest because of their excellent spin and optical characteristics for quantum information and metrology. To take advantage of the characteristics, the precise control of the orien