ﻻ يوجد ملخص باللغة العربية
We consider positive critical points of Caffarelli-Kohn-Nirenberg inequalities and prove a Liouville type result which allows us to give a complete classification of the solutions in a certain range of parameters, providing a symmetry result for positive solutions. The governing operator is a weighted $p$-Laplace operator, which we consider for a general $p in (1,d)$. For $p=2$, the symmetry breaking region for extremals of Caffarelli-Kohn-Nirenberg inequalities was completely characterized in [J. Dolbeault, M. Esteban, M. Loss, Invent. Math. 44 (2016)]. Our results extend this result to a general $p$ and are optimal in some cases.
In this paper, we consider the Caffarelli-Kohn-Nirenberg (CKN) inequality: begin{eqnarray*} bigg(int_{{mathbb R}^N}|x|^{-b(p+1)}|u|^{p+1}dxbigg)^{frac{2}{p+1}}leq C_{a,b,N}int_{{mathbb R}^N}|x|^{-2a}| abla u|^2dx end{eqnarray*} where $Ngeq3$, $a<frac
We study the problem of prescribing $sigma_k$-curvature for a conformal metric on the standard sphere $mathbb{S}^n$ with $2 leq k < n/2$ and $n geq 5$ in axisymmetry. Compactness, non-compactness, existence and non-existence results are proved in ter
We establish theorems on the existence and compactness of solutions to the $sigma_2$-Nirenberg problem on the standard sphere $mathbb S^2$. A first significant ingredient, a Liouville type theorem for the associated fully nonlinear Mobius invariant e
The objective of this paper is two-fold. First, we establish new sharp quantitative estimates for Faber-Krahn inequalities on simply connected space forms. In these spaces, geodesic balls uniquely minimize the first eigenvalue of the Dirichlet Laplac