ﻻ يوجد ملخص باللغة العربية
We consider a minimal residual discretization of a simultaneous space-time variational formulation of parabolic evolution equations. Under the usual `LBB stability condition on pairs of trial- and test spaces we show quasi-optimality of the numerical approximations without assuming symmetry of the spatial part of the differential operator. Under a stronger LBB condition we show error estimates in an energy-norm which are independent of this spatial differential operator.
We analyze Galerkin discretizations of a new well-posed mixed space-time variational formulation of parabolic PDEs. For suitable pairs of finite element trial spaces, the resulting Galerkin operators are shown to be uniformly stable. The method is co
In this work, an $r$-linearly converging adaptive solver is constructed for parabolic evolution equations in a simultaneous space-time variational formulation. Exploiting the product structure of the space-time cylinder, the family of trial spaces th
In this paper, we consider a parabolic problem with time-dependent heterogeneous coefficients. Many applied problems have coupled space and time heterogeneities. Their homogenization or upscaling requires cell problems that are formulated in space-ti
We study discretizations of Hamiltonian systems on the probability density manifold equipped with the $L^2$-Wasserstein metric. Based on discrete optimal transport theory, several Hamiltonian systems on graph (lattice) with different weights are deri
In [2019, Space-time least-squares finite elements for parabolic equations, arXiv:1911.01942] by Fuhrer& Karkulik, well-posedness of a space-time First-Order System Least-Squares formulation of the heat equation was proven. In the present work, this