ﻻ يوجد ملخص باللغة العربية
We analyze Galerkin discretizations of a new well-posed mixed space-time variational formulation of parabolic PDEs. For suitable pairs of finite element trial spaces, the resulting Galerkin operators are shown to be uniformly stable. The method is compared to two related space-time discretization methods introduced in [IMA J. Numer. Anal., 33(1) (2013), pp. 242-260] by R. Andreev and in [Comput. Methods Appl. Math., 15(4) (2015), pp. 551-566] by O. Steinbach.
We consider a minimal residual discretization of a simultaneous space-time variational formulation of parabolic evolution equations. Under the usual `LBB stability condition on pairs of trial- and test spaces we show quasi-optimality of the numerical
In [2019, Space-time least-squares finite elements for parabolic equations, arXiv:1911.01942] by Fuhrer& Karkulik, well-posedness of a space-time First-Order System Least-Squares formulation of the heat equation was proven. In the present work, this
In this work, an $r$-linearly converging adaptive solver is constructed for parabolic evolution equations in a simultaneous space-time variational formulation. Exploiting the product structure of the space-time cylinder, the family of trial spaces th
We present two semidiscretizations of the Camassa-Holm equation in periodic domains based on variational formulations and energy conservation. The first is a periodic version of an existing conservative multipeakon method on the real line, for which
In this paper, we develop an oscillation free local discontinuous Galerkin (OFLDG) method for solving nonlinear degenerate parabolic equations. Following the idea of our recent work [J. Lu, Y. Liu, and C.-W. Shu, SIAM J. Numer. Anal. 59(2021), pp. 12