ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal bound on energy cost of bit reset in finite time

69   0   0.0 ( 0 )
 نشر من قبل Yi-Zheng Zhen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider how the energy cost of bit reset scales with the time duration of the protocol. Bit reset necessarily takes place in finite time, where there is an extra penalty on top of the quasistatic work cost derived by Landauer. This extra energy is dissipated as heat in the computer, inducing a fundamental limit on the speed of irreversible computers. We formulate a hardware-independent expression for this limit. We derive a closed-form lower bound on the work penalty as a function of the time taken for the protocol and bit reset error. It holds for discrete as well as continuous systems, assuming only that the master equation respects detailed balance.



قيم البحث

اقرأ أيضاً

Landauers principle states that it costs at least kTln2 of work to reset one bit in the presence of a heat bath at temperature T. The bound of kTln2 is achieved in the unphysical infinite-time limit. Here we ask what is possible if one is restricted to finite-time protocols. We prove analytically that it is possible to reset a bit with a work cost close to kTln2 in a finite time. We construct an explicit protocol that achieves this, which involves changing the systems Hamiltonian avoiding quantum coherences, and thermalising. Using concepts and techniques pertaining to single-shot statistical mechanics, we further develop the limit on the work cost, proving that the heat dissipated is close to the minimal possible not just on average, but guaranteed with high confidence in every run. Moreover we exploit the protocol to design a quantum heat engine that works near the Carnot efficiency in finite time.
Counter-diabatic driving (CD) is a technique in quantum control theory designed to counteract nonadiabatic excitations and guide the system to follow its instantaneous energy eigenstates, and hence has applications in state preparation, quantum annea ling, and quantum thermodynamics. However, in many practical situations, the effect of the environment cannot be neglected, and the performance of the CD is expected to degrade. To arrive at universal bounds on the resulting error of CD in this situation we consider a driven spin-boson model as a prototypical setup. The inequalities we obtain, in terms of either the Bures angle or the fidelity, allow us to estimate the maximum error solely characterized by the parameters of the system and the bath. By utilizing the analytical form of the upper bound, we demonstrate that the error can be systematically reduced through optimization of the external driving protocol of the system. We also show that if we allow a time-dependent system-bath coupling angle, the obtained bound can be saturated and realizes unit fidelity.
In this paper, we consider a stochastic process that may experience random reset events which relocate the system to its starting position. We focus our attention on a one-dimensional, monotonic continuous-time random walk with a constant drift: the process moves in a fixed direction between the reset events, either by the effect of the random jumps, or by the action of a deterministic bias. However, the orientation of its motion is randomly determined after each restart. As a result of these alternating dynamics, interesting properties do emerge. General formulas for the propagator as well as for two extreme statistics, the survival probability and the mean first-passage time, are also derived. The rigor of these analytical results is verified by numerical estimations, for particular but illuminating examples.
To reveal the role of the quantumness in the Otto cycle and to discuss the validity of the thermodynamic uncertainty relation (TUR) in the cycle, we study the quantum Otto cycle and its classical counterpart. In particular, we calculate exactly the m ean values and relative error of thermodynamic quantities. In the quasistatic limit, quantumness reduces the productivity and precision of the Otto cycle compared to that in the absence of quantumness, whereas in the finite-time mode, it can increase the cycles productivity and precision. Interestingly, as the strength (heat conductance) between the system and the bath increases, the precision of the quantum Otto cycle overtakes that of the classical one. Testing the conventional TUR of the Otto cycle, in the region where the entropy production is large enough, we find a tighter bound than that of the conventional TUR. However, in the finite-time mode, both quantum and classical Otto cycles violate the conventional TUR in the region where the entropy production is small. This implies that another modified TUR is required to cover the finite-time Otto cycle. Finally, we discuss the possible origin of this violation in terms of the uncertainty products of the thermodynamic quantities and the relative error near resonance conditions.
Chaotic dynamics in quantum many-body systems scrambles local information so that at late times it can no longer be accessed locally. This is reflected quantitatively in the out-of-time-ordered correlator of local operators, which is expected to deca y to zero with time. However, for systems of finite size, out-of-time-ordered correlators do not decay exactly to zero and in this paper we show that the residual value can provide useful insights into the chaotic dynamics. When energy is conserved, the late-time saturation value of the out-of-time-ordered correlator of generic traceless local operators scales as an inverse polynomial in the system size. This is in contrast to the inverse exponential scaling expected for chaotic dynamics without energy conservation. We provide both analytical arguments and numerical simulations to support this conclusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا