ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous-time random walks with reset events: Historical background and new perspectives

297   0   0.0 ( 0 )
 نشر من قبل Miquel Montero
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider a stochastic process that may experience random reset events which relocate the system to its starting position. We focus our attention on a one-dimensional, monotonic continuous-time random walk with a constant drift: the process moves in a fixed direction between the reset events, either by the effect of the random jumps, or by the action of a deterministic bias. However, the orientation of its motion is randomly determined after each restart. As a result of these alternating dynamics, interesting properties do emerge. General formulas for the propagator as well as for two extreme statistics, the survival probability and the mean first-passage time, are also derived. The rigor of these analytical results is verified by numerical estimations, for particular but illuminating examples.



قيم البحث

اقرأ أيضاً

In this paper we consider a stochastic process that may experience random reset events which bring suddenly the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonous continuous-time random walks with a constant drift: the process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence|for any drift strength|of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.
136 - Miquel Montero 2011
The Continuous-Time Random Walk (CTRW) formalism can be adapted to encompass stochastic processes with memory. In this article we will show how the random combination of two different unbiased CTRWs can give raise to a process with clear drift, if on e of them is a CTRW with memory. If one identifies the other one as noise, the effect can be thought as a kind of stochastic resonance. The ultimate origin of this phenomenon is the same of the Parrondos paradox in game theory
We construct admissible circulant Laplacian matrix functions as generators for strictly increasing random walks on the integer line. These Laplacian matrix functions refer to a certain class of Bernstein functions. The approach has connections with b iased walks on digraphs. Within this framework, we introduce a space-time generalization of the Poisson process as a strictly increasing walk with discrete Mittag-Leffler jumps subordinated to a (continuous-time) fractional Poisson process. We call this process `{it space-time Mittag-Leffler process}. We derive explicit formulae for the state probabilities which solve a Cauchy problem with a Kolmogorov-Feller (forward) difference-differential equation of general fractional type. We analyze a `well-scaled diffusion limit and obtain a Cauchy problem with a space-time convolution equation involving Mittag-Leffler densities. We deduce in this limit the `state density kernel solving this Cauchy problem. It turns out that the diffusion limit exhibits connections to Prabhakar general fractional calculus. We also analyze in this way a generalization of the space-time fractional Mittag-Leffler process. The approach of construction of good Laplacian generator functions has a large potential in applications of space-time generalizations of the Poisson process and in the field of continuous-time random walks on digraphs.
108 - B.I. Henry , M.T. Batchelor 2003
Exact results are obtained for random walks on finite lattice tubes with a single source and absorbing lattice sites at the ends. Explicit formulae are derived for the absorption probabilities at the ends and for the expectations that a random walk w ill visit a particular lattice site before being absorbed. Results are obtained for lattice tubes of arbitrary size and each of the regular lattice types; square, triangular and honeycomb. The results include an adjustable parameter to model the effects of strain, such as surface curvature, on the surface diffusion. Results for the triangular lattice tubes and the honeycomb lattice tubes model diffusion of adatoms on single walled zig-zag carbon nano-tubes with open ends.
123 - M.T. Batchelor 2002
The problem of a random walk on a finite triangular lattice with a single interior source point and zig-zag absorbing boundaries is solved exactly. This problem has been previously considered intractable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا