ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-size scaling of out-of-time-ordered correlators at late times

168   0   0.0 ( 0 )
 نشر من قبل Yichen Huang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chaotic dynamics in quantum many-body systems scrambles local information so that at late times it can no longer be accessed locally. This is reflected quantitatively in the out-of-time-ordered correlator of local operators, which is expected to decay to zero with time. However, for systems of finite size, out-of-time-ordered correlators do not decay exactly to zero and in this paper we show that the residual value can provide useful insights into the chaotic dynamics. When energy is conserved, the late-time saturation value of the out-of-time-ordered correlator of generic traceless local operators scales as an inverse polynomial in the system size. This is in contrast to the inverse exponential scaling expected for chaotic dynamics without energy conservation. We provide both analytical arguments and numerical simulations to support this conclusion.



قيم البحث

اقرأ أيضاً

The out-of-time-ordered correlator (OTOC) is central to the understanding of information scrambling in quantum many-body systems. In this work, we show that the OTOC in a quantum many-body system close to its critical point obeys dynamical scaling la ws which are specified by a few universal critical exponents of the quantum critical point. Such scaling laws of the OTOC imply a universal form for the butterfly velocity of a chaotic system in the quantum critical region and allow one to locate the quantum critical point and extract all universal critical exponents of the quantum phase transitions. We numerically confirm the universality of the butterfly velocity in a chaotic model, namely the transverse axial next-nearest-neighbor Ising model, and show the feasibility of extracting the critical properties of quantum phase transitions from OTOC using the Lipkin-Meshkov-Glick (LMG) model.
The out-of-time-ordered correlators (OTOCs) have been proposed and widely used recently as a tool to define and describe many-body quantum chaos. Here, we develop the Keldysh non-linear sigma model technique to calculate these correlators in interact ing disordered metals. In particular, we focus on the regularized and unregularized OTOCs, defined as $Tr[sqrt{rho} A(t) sqrt{rho} A^dagger(t)]$ and $Tr[rho A(t)A^dagger(t)]$ respectively (where $A(t)$ is the anti-commutator of fermion field operators and $rho$ is the thermal density matrix). The calculation of the rate of OTOCs exponential growth is reminiscent to that of the dephasing rate in interacting metals, but here it involves two replicas of the system (two worlds). The intra-world contributions reproduce the dephasing (that would correspond to a decay of the correlator), while the inter-world terms provide a term of the opposite sign that exceeds dephasing. Consequently, both regularized and unregularized OTOCs grow exponentially in time, but surprisingly we find that the corresponding many-body Lyapunov exponents are different. For the regularized correlator, we reproduce an earlier perturbation theory result for the Lyapunov exponent that satisfies the Maldacena-Shenker-Stanford bound. However, the Lyapunov exponent of the unregularized correlator parametrically exceeds the bound. We argue that the latter is not a reliable indicator of many body quantum chaos as it contains additional contributions from elastic scattering events due to virtual processes that should not contribute to many-body chaos. These results bring up an important general question of the physical meaning of the OTOCs often used in calculations and proofs. We briefly discuss possible connections of the OTOCs to observables in quantum interference effects and level statistics via a many-body analogue of the Bohigas-Giannoni-Schmit conjecture.
Information scrambling, which is the spread of local information through a systems many-body degrees of freedom, is an intrinsic feature of many-body dynamics. In quantum systems, the out-of-time-ordered correlator (OTOC) quantifies information scram bling. Motivated by experiments that have measured the OTOC at infinite temperature and a theory proposal to measure the OTOC at finite temperature using the thermofield double state, we describe a protocol to measure the OTOC in a finite temperature spin chain that is realized approximately as one half of the ground state of two moderately-sized coupled spin chains. We consider a spin Hamiltonian with particle-hole symmetry, for which we show that the OTOC can be measured without needing sign-reversal of the Hamiltonian. We describe a protocol to mitigate errors in the estimated OTOC, arising from the finite approximation of the system to the thermofield double state. We show that our protocol is also robust to main sources of decoherence in experiments.
Benfords law is an empirical edict stating that the lower digits appear more often than higher ones as the first few significant digits in statistics of natural phenomena and mathematical tables. A marked proportion of such analyses is restricted to the first significant digit. We employ violation of Benfords law, up to the first four significant digits, for investigating magnetization and correlation data of paradigmatic quantum many-body systems to detect cooperative phenomena, focusing on the finite-size scaling exponents thereof. We find that for the transverse field quantum XY model, behavior of the very first significant digit of an observable, at an arbitrary point of the parameter space, is enough to capture the quantum phase transition in the model with a relatively high scaling exponent. A higher number of significant digits do not provide an appreciable further advantage, in particular, in terms of an increase in scaling exponents. Since the first significant digit of a physical quantity is relatively simple to obtain in experiments, the results have potential implications for laboratory observations in noisy environments.
Out-of-time-ordered correlation functions (OTOCs) play a crucial role in the study of thermalization, entanglement, and quantum chaos, as they quantify the scrambling of quantum information due to complex interactions. As a consequence of their out-o f-time-ordered nature, OTOCs are difficult to measure experimentally. In this Letter we propose an OTOC measurement protocol that does not rely on the reversal of time evolution and is easy to implement in a range of experimental settings. We demonstrate application of our protocol by the characterization of quantum chaos in a periodically driven spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا