ﻻ يوجد ملخص باللغة العربية
Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, $^{226}$RaF and radium cation, $^{226}$Ra$^+$, are reported. The considered transition $X~^2Sigma_{1/2} to A~^2Pi_{1/2}$ in RaF is one of the main features of this molecule and can be used to laser cool RaF for subsequent measurement of the electron electric dipole moment. For molecular and atomic predictions we go beyond the Dirac-Coulomb Hamiltonian and treat high-order electron correlation effects within the coupled cluster theory with the inclusion of quadruple and ever higher amplitudes. Effects of quantum electrodynamics (QED) are included non-perturbatively using the model QED operator that is implemented now for molecules. It is shown that the inclusion of QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac-Coulomb-Breit Hamiltonian and the experiment. The remaining deviation from the experimental values is within a few meV. This is more than an order of magnitude better than the chemical accuracy, 1 kcal/mol=43 meV, that is usually considered as a guiding thread in theoretical molecular physics.
The diatomic molecule radium monofluoride (RaF) has recently been proposed as a versatile probe for physics beyond the current standard model. Herein, a route towards production of a RaF molecular beam via radium ions is proposed. It takes advantage
Energy levels, wavelengths, lifetimes and hyperfine structure constants for the isotopes of the first and second spectra of radium, Ra I and Ra II have been compiled. Wavelengths and wave numbers are tabulated for 226Ra and for other Ra isotopes. Iso
Isotope shifts of $^{223-226,228}$Ra$^{19}$F were measured for different vibrational levels in the electronic transition $A^{2}{}{Pi}_{1/2}leftarrow X^{2}{}{Sigma}^{+}$. The observed isotope shifts demonstrate the particularly high sensitivity of rad
There is sparse direct experimental evidence that atomic nuclei can exhibit stable pear shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole ($E3$) matrix
Parity (P) and time (T) invariance violating effects in the Ra atom are strongly enhanced due to close states of opposite parity, the large nuclear charge Z and the collective nature of P,T-odd nuclear moments. We have performed calculations of the a