ﻻ يوجد ملخص باللغة العربية
There is sparse direct experimental evidence that atomic nuclei can exhibit stable pear shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole ($E3$) matrix elements have been determined for transitions in $^{222,228}$Ra nuclei using the method of sub-barrier, multi-step Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of $E$3 matrix elements for different nuclear transitions is explained by describing $^{222}$Ra as pear-shaped with stable octupole deformation, while $^{228}$Ra behaves like an octupole vibrator.
Energy levels, wavelengths, lifetimes and hyperfine structure constants for the isotopes of the first and second spectra of radium, Ra I and Ra II have been compiled. Wavelengths and wave numbers are tabulated for 226Ra and for other Ra isotopes. Iso
With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic pr
The radioactive radium-225 ($^{225}$Ra) atom is a favorable case to search for a permanent electric dipole moment (EDM). Due to its strong nuclear octupole deformation and large atomic mass, $^{225}$Ra is particularly sensitive to interactions in the
Background: Octupole-deformed nuclei, such as that of $^{225}$Ra, are expected to amplify observable atomic electric dipole moments (EDMs) that arise from time-reversal and parity-violating interactions in the nuclear medium. In 2015, we reported the
Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, $^{226}$RaF and radium cation, $^{226}$Ra$^+$, are reported. The considered transition $X~^2Sigma_{1/2} to A~^2Pi_{1/2}$ in RaF is one of the main fea