ﻻ يوجد ملخص باللغة العربية
The rise of digitization of cultural documents offers large-scale contents, opening the road for development of AI systems in order to preserve, search, and deliver cultural heritage. To organize such cultural content also means to classify them, a task that is very familiar to modern computer science. Contextual information is often the key to structure such real world data, and we propose to use it in form of a knowledge graph. Such a knowledge graph, combined with content analysis, enhances the notion of proximity between artworks so it improves the performances in classification tasks. In this paper, we propose a novel use of a knowledge graph, that is constructed on annotated data and pseudo-labeled data. With label propagation, we boost artwork classification by training a model using a graph convolutional network, relying on the relationships between entities of the knowledge graph. Following a transductive learning framework, our experiments show that relying on a knowledge graph modeling the relations between labeled data and unlabeled data allows to achieve state-of-the-art results on multiple classification tasks on a dataset of paintings, and on a dataset of Buddha statues. Additionally, we show state-of-the-art results for the difficult case of dealing with unbalanced data, with the limitation of disregarding classes with extremely low degrees in the knowledge graph.
Graph neural networks (GNNs) have emerged as effective approaches for graph analysis, especially in the scenario of semi-supervised learning. Despite its success, GNN often suffers from over-smoothing and over-fitting problems, which affects its perf
A scalable semi-supervised node classification method on graph-structured data, called GraphHop, is proposed in this work. The graph contains attributes of all nodes but labels of a few nodes. The classical label propagation (LP) method and the emerg
Graph Neural Networks (GNNs) have achieved great success among various domains. Nevertheless, most GNN methods are sensitive to the quality of graph structures. To tackle this problem, some studies exploit different graph structure learning strategie
Images or videos always contain multiple objects or actions. Multi-label recognition has been witnessed to achieve pretty performance attribute to the rapid development of deep learning technologies. Recently, graph convolution network (GCN) is lever
The original design of Graph Convolution Network (GCN) couples feature transformation and neighborhood aggregation for node representation learning. Recently, some work shows that coupling is inferior to decoupling, which supports deep graph propagat