ﻻ يوجد ملخص باللغة العربية
Sequences of events including infectious disease outbreaks, social network activities, and crimes are ubiquitous and the data on such events carry essential information about the underlying diffusion processes between communities (e.g., regions, online user groups). Modeling diffusion processes and predicting future events are crucial in many applications including epidemic control, viral marketing, and predictive policing. Hawkes processes offer a central tool for modeling the diffusion processes, in which the influence from the past events is described by the triggering kernel. However, the triggering kernel parameters, which govern how each community is influenced by the past events, are assumed to be static over time. In the real world, the diffusion processes depend not only on the influences from the past, but also the current (time-evolving) states of the communities, e.g., peoples awareness of the disease and peoples current interests. In this paper, we propose a novel Hawkes process model that is able to capture the underlying dynamics of community states behind the diffusion processes and predict the occurrences of events based on the dynamics. Specifically, we model the latent dynamic function that encodes these hidden dynamics by a mixture of neural networks. Then we design the triggering kernel using the latent dynamic function and its integral. The proposed method, termed DHP (Dynamic Hawkes Processes), offers a flexible way to learn complex representations of the time-evolving communities states, while at the same time it allows to computing the exact likelihood, which makes parameter learning tractable. Extensive experiments on four real-world event datasets show that DHP outperforms five widely adopted methods for event prediction.
The contagion dynamics can emerge in social networks when repeated activation is allowed. An interesting example of this phenomenon is retweet cascades where users allow to re-share content posted by other people with public accounts. To model this t
Modeling online discourse dynamics is a core activity in understanding the spread of information, both offline and online, and emergent online behavior. There is currently a disconnect between the practitioners of online social media analysis -- usua
Hawkes processes are a class of point processes that have the ability to model the self- and mutual-exciting phenomena. Although the classic Hawkes processes cover a wide range of applications, their expressive ability is limited due to three key hyp
Asynchronous events on the continuous time domain, e.g., social media actions and stock transactions, occur frequently in the world. The ability to recognize occurrence patterns of event sequences is crucial to predict which typeof events will happen
This work builds a novel point process and tools to use the Hawkes process with interval-censored data. Such data records the aggregated counts of events solely during specific time intervals -- such as the number of patients admitted to the hospital